Excellence in Research: Mechanistic Prediction of Soil Microbial Response to Temperature Change
卓越研究:土壤微生物对温度变化响应的机制预测
基本信息
- 批准号:1900885
- 负责人:
- 金额:$ 99.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microbes in soils break down organic material and produce CO2, a major greenhouse gas in the atmosphere responsible for global warming. In turn, rising temperatures may increase the activity of these microbes, causing more CO2 to be lost to the atmosphere. The so-called positive feedback is a daunting threat to ecosystem sustainability and human society. However, responses of microbes in soils are complex. Different microbial groups may respond differently to temperature increase through changes in growth, composition and physiology. There may also be genetic changes to these microbes, which may profoundly change the impact of microbial activities. Genetic changes in response to temperature increases have rarely been studied. In addition, soil organic carbon varies substantially in how quickly it can be decomposed by microbes as temperatures increase. Given this level of complexity, it is difficult to achieve accurate predictions of soil response to temperature change. This research will design a unique soil warming experiment to test hypotheses on microbial responses to future environmental changes. Results will add substantially to knowledge on carbon cycling and allow better forecasts of environmental changes. In addition, this project will greatly increase research capacity at an institution serving underrepresented minorities, with strong impacts on their training and retention in STEM fields.In this project, it is hypothesized that soil warming will cause consistently more CO2 loss to the atmosphere. This is likely driven by greater microbial decomposition of recalcitrant carbon compounds in soil organic matter (SOM), supported by elevated phenolic oxidase activity and greater diversity in fungal laccase genes. To address this hypothesis, a soil warming infrastructure will be established at Tennessee State University (TSU) to collect high frequency data on soil respiration, SOM content and quality, microbial community composition, extracellular enzyme activities, and microbial genomic information for at least two years. It is further hypothesized that thermal adaptation will result in decreased carbon use efficiency (CUE) and accelerated biomass turnover (rB) of microbial communities under warming. To address this hypothesis, the streams of data collected in the experiment will be integrated with a microbial ecosystem model to estimate the temperature sensitivities of CUE and rB. These efforts will improve the mechanistic understanding of soil microbial community response to temperature change. The project results should improve the representation of microbial processes in Earth system models. By developing strong research collaborations with the University of California Irvine (UCI), a leading institution in microbial and ecological sciences, this project will enable underrepresented minorities to participate in learning state-of-the-art modeling skills, and to get hands-on experience in microbial and molecular analytical techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
土壤中的微生物分解有机材料并产生二氧化碳,这是负责全球变暖的大气中的主要温室气体。反过来,温度升高可能会增加这些微生物的活性,从而导致更多的二氧化碳流失在大气中。所谓的积极反馈是对生态系统可持续性和人类社会的巨大威胁。但是,土壤中微生物的反应很复杂。不同的微生物组可能会因生长,组成和生理学的变化而对温度升高的反应不同。这些微生物也可能会发生遗传变化,这可能会深刻地改变微生物活性的影响。 很少研究对温度升高的遗传变化。此外,土壤有机碳在温度升高的情况下会因微生物分解的速度而有很大差异。鉴于这种复杂程度,很难准确地预测土壤对温度变化的反应。这项研究将设计一个独特的土壤变暖实验,以测试有关对未来环境变化的微生物反应的假设。结果将大大增加有关碳循环的知识,并可以更好地预测环境变化。此外,该项目将大大提高服务不足少数群体的机构的研究能力,对其在STEM领域的培训和保留率产生强烈影响。在该项目中,假设土壤变暖将导致大气持续造成更多的二氧化碳损失。这可能是由土壤有机物(SOM)中顽固碳化合物的更大微生物分解驱动的,并由真菌漆酶基因的酚类氧化酶活性升高和较高的多样性支持。为了解决这一假设,将在田纳西州立大学(TSU)建立土壤变暖基础设施,以收集有关土壤呼吸,SOM含量和质量,微生物社区组成,细胞外酶活性以及微生物基因组信息至少两年的高频数据。进一步假设,热适应会导致碳利用效率(CUE)降低,并且在变暖下的微生物群落加速了生物量转移(RB)。为了解决这一假设,实验中收集的数据流将与微生物生态系统模型集成,以估计提示和RB的温度敏感性。这些努力将提高对土壤微生物社区对温度变化的反应的机械理解。项目结果应改善地球系统模型中微生物过程的表示。通过与加利福尼亚大学尔湾分校(UCI)建立强大的研究合作,这是微生物和生态科学领域的领先机构,该项目将使代表性不足的少数群体能够参与学习最先进的建模技能,并通过评估NSF的宣传授权,并获得了智能奖,并获得了智力的授权。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soil extracellular oxidases mediated nitrogen fertilization effects on soil organic carbon sequestration in bioenergy croplands
- DOI:10.1111/gcbb.12860
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Jianjun Duan;Mingzhang Yuan;Siyang Jian;L. Gamage;Madhav Parajuli;Kudjo E. Dzantor;D. Hui;P. Fay;Jianwei Li
- 通讯作者:Jianjun Duan;Mingzhang Yuan;Siyang Jian;L. Gamage;Madhav Parajuli;Kudjo E. Dzantor;D. Hui;P. Fay;Jianwei Li
Effects of nitrogen fertilization and bioenergy crop type on topsoil organic carbon and total Nitrogen contents in middle Tennessee USA
- DOI:10.1371/journal.pone.0230688
- 发表时间:2020-03-30
- 期刊:
- 影响因子:3.7
- 作者:Li, Jianwei;Jian, Siyang;Hui, Dafeng
- 通讯作者:Hui, Dafeng
Simulating Temperature in a Soil Incubation Experiment
模拟土壤孵化实验中的温度
- DOI:10.3791/64081
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Jianwei;Areeveso, Precious;Wang, Xuehan;Jian, Siyang;Gamage, Lahiru
- 通讯作者:Gamage, Lahiru
How much is soil nitrous oxide emission reduced with biochar application? An evaluation of meta‐analyses
- DOI:10.1111/gcbb.13003
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:N. Kaur;C. Kieffer;Wei Ren;D. Hui
- 通讯作者:N. Kaur;C. Kieffer;Wei Ren;D. Hui
Nitrogen Fertilization Restructured Spatial Patterns of Soil Organic Carbon and Total Nitrogen in Switchgrass and Gamagrass Croplands in Tennessee USA
氮肥重构美国田纳西州柳枝稷和伽马草农田土壤有机碳和全氮的空间格局
- DOI:10.1038/s41598-020-58217-x
- 发表时间:2020
- 期刊:
- 影响因子:4.6
- 作者:Li, Jianwei;Jian, Siyang;Lane, Chad S.;Guo, Chunlan;Lu, YueHan;Deng, Qi;Mayes, Melanie A.;Dzantor, Kudjo E.;Hui, Dafeng
- 通讯作者:Hui, Dafeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianwei Li其他文献
Noncovalent Interactions-Driven Self-Assembly of Polyanionic Additive for Long Anti-Calendar Aging and High-Rate Zinc Metal Batteries.
非共价相互作用驱动的聚阴离子添加剂的自组装,用于长期抗日历老化和高倍率锌金属电池。
- DOI:
10.1002/advs.202404513 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zimin Yang;Yilun Sun;Jianwei Li;Guanjie He;Guoliang Chai - 通讯作者:
Guoliang Chai
Covariant support region and detection algorithm based on LoG corners
基于LoG角点的协变支持区域及检测算法
- DOI:
10.1109/robio.2009.5420847 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Yawei Liu;Jianwei Li - 通讯作者:
Jianwei Li
Ship detection in SAR images based on an improved faster R-CNN
- DOI:
10.1109/bigsardata.2017.8124934 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:0
- 作者:
Jianwei Li;Changwen Qu;Jiaqi Shao - 通讯作者:
Jiaqi Shao
Marginal Scale State Analysis of Cloud Computing Economy Based on a Class of First Order Differential Equations
- DOI:
10.2478/amns.2023.1.00307 - 发表时间:
2023-06 - 期刊:
- 影响因子:3.1
- 作者:
Jianwei Li - 通讯作者:
Jianwei Li
Understanding sustained coarsening driven by cyclic phase transformation in additively manufactured Ti-6Al-4V
了解增材制造的 Ti-6Al-4V 中循环相变驱动的持续粗化
- DOI:
10.1016/j.jallcom.2022.165322 - 发表时间:
2022-05 - 期刊:
- 影响因子:6.2
- 作者:
Yujian Wang;Junjie Li;Jianwei Li;Lei Zhang;Jiankai Ma;Zhijun Wang;Feng He;Jincheng Wang - 通讯作者:
Jincheng Wang
Jianwei Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
新型血管微创介入智能碎溶栓系统设计与多物理效应下碎溶栓机理研究
- 批准号:82302400
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
- 批准号:52374316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
飞秒激光调控阿秒电荷迁移的机理研究及其在卤代乙炔中的应用
- 批准号:12374267
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
激光照明用阵列包芯结构荧光陶瓷的制备及其发光光斑调控机理研究
- 批准号:52302139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Excellence in Research- Dimeric Bis-Naphthoquinone Formation via a Green and Straightforward Approach Mechanistic and Adaptability Studies
卓越的研究 - 通过绿色和直接的方法形成二聚双萘醌机制和适应性研究
- 批准号:
2300447 - 财政年份:2023
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Excellence in Research’: Mechanistic Modelling and Validation Approaches to Decontaminate (+) ssRNA Viruses using Ultra-Violet Technologies
卓越研究 –:使用紫外线技术净化 ( ) ssRNA 病毒的机械建模和验证方法
- 批准号:
2200683 - 财政年份:2022
- 资助金额:
$ 99.94万 - 项目类别:
Standard Grant
Mechanistic Study of Stroke-induced Immune Suppression and Identification of Immune Modulatory Targets for Stroke-associated Pneumonia
中风引起的免疫抑制机制研究及中风相关肺炎免疫调节靶点的鉴定
- 批准号:
10217167 - 财政年份:2014
- 资助金额:
$ 99.94万 - 项目类别:
Mechanistic Study of Stroke-induced Immune Suppression and Identification of Immune Modulatory Targets for Stroke-associated Pneumonia
中风引起的免疫抑制机制研究及中风相关肺炎免疫调节靶点的鉴定
- 批准号:
10025933 - 财政年份:2014
- 资助金额:
$ 99.94万 - 项目类别:
Structural and Mechanistic Studies of Essential Microbial Kinases
必需微生物激酶的结构和机制研究
- 批准号:
8518430 - 财政年份:2013
- 资助金额:
$ 99.94万 - 项目类别: