Combinatorial investigation of q-analogs of two recursions for Catalan numbers with alternating signs

带交替符号的加泰罗尼亚数的两个递归的 q 类似物的组合研究

基本信息

项目摘要

Recently Zeilberger conjectured that if the integers $\{A_n\}_{n\ge 1}$ are inductively defined via the recursion for Catalan numbers with alternating signs, then the integers $\{A_n\}_{n\ge 2}$ are increasing and positive. Motivated by his conjecture and Andrews' open questions on Koshy's identity, we are primarily concerned with $q$-analogs of two recursions for Catalan numbers with alternating signs. Here, the $q$-analog of a sequence of numbers resp.\ an identity is an extension of those by parameter $q$ that naturally reduces to the original in the limit $q\rightarrow 1$. Our main objective is to generalize Zeilberger's conjecture on sequence $\{A_n\}_{n\ge 1}$ into a combinatorial and probabilistic study of $q$-analogs of $\{A_n\}_{n\ge 1}$. By further analyzing the $q$-analogs of a similar recursion for Fuss-Catalan numbers, we aim toshow the universal positivity of the coefficients of the $q$-analogs. Much more are beyond Zeilberger's conjecture. Indeed our investigation will contribute to approach the intrinsic connection of two seemingly unrelated $q$-series with positive coefficients. One is the $q$-analog of $\{A_n\}_{n\ge 1}$, the other one comes from the $q$-analog of Koshy's identity due to Andrews. Along our way we also expect to achieve some intermediate results of relevance, including completely solving Andrew's open problems on the $q$-analog of Koshy's identity in the context of the $q$-hypergeometric series, a combinatorial proof of the $q$-analog of Koshy's identity in terms of Narayana polynomials, providing a new proof of Zeilberger's conjecture by employing analytic combinatorial tools and answering Lassalle's open questions on the positivity of Schur functions associated to the complete functions generalized from the exponential generating function of Catalan numbers.
Recently Zeilberger conjectured that if the integers $\{A_n\}_{n\ge 1}$ are inductively defined via the recursion for Catalan numbers with alternating signs, then the integers $\{A_n\}_{n\ge 2}$ are increasing and positive. Motivated by his conjecture and Andrews' open questions on Koshy's identity, we are primarily concerned with $q$-analogs of two recursions for Catalan numbers with alternating signs. Here, the $q$-analog of a sequence of numbers resp.\ an identity is an extension of those by parameter $q$ that naturally reduces to the original in the limit $q\rightarrow 1$. Our main objective is to generalize Zeilberger's conjecture on sequence $\{A_n\}_{n\ge 1}$ into a combinatorial and probabilistic study of $q$-analogs of $\{A_n\}_{n\ge 1}$. By further analyzing the $q$-analogs of a similar recursion for Fuss-Catalan numbers, we aim toshow the universal positivity of the coefficients of the $q$-analogs. Much more are beyond Zeilberger's conjecture. Indeed our investigation will contribute to approach the intrinsic connection of two seemingly unrelated $q$-series with positive coefficients. One is the $q$-analog of $\{A_n\}_{n\ge 1}$, the other one comes from the $q$-analog of Koshy's identity due to Andrews. Along our way we also expect to achieve some intermediate results of relevance, including completely solving Andrew's open problems on the $q$-analog of Koshy's identity in the context of the $q$-hypergeometric series, a combinatorial proof of the $q$-analog of Koshy's identity in terms of Narayana polynomials, providing a new proof of Zeilberger's conjecture by employing analytic combinatorial tools and answering Lassalle's open questions on the positivity of Schur functions associated to the complete functions generalized from the exponential generating function of Catalan numbers.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equality of Shapley value and fair proportion index in phylogenetic trees
  • DOI:
    10.1007/s00285-014-0853-0
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Fuchs, Michael;Jin, Emma Yu
  • 通讯作者:
    Jin, Emma Yu
An Asymptotic Analysis of Labeled and Unlabeled k-Trees
  • DOI:
    10.1007/s00453-015-0039-1
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    M. Drmota;E. Y. Jin
  • 通讯作者:
    M. Drmota;E. Y. Jin
Heaps and two exponential structures
堆和两个指数结构
  • DOI:
    10.1016/j.ejc.2015.12.007
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emma Yu Jin
  • 通讯作者:
    Emma Yu Jin
New proofs of two $q$-analogues of Koshy's formula
  • DOI:
    10.1090/proc/12627
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Y. Jin;M. Nebel
  • 通讯作者:
    E. Y. Jin;M. Nebel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Yu Jin其他文献

Dr. Yu Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Sentanyl II: A Multi-State Analysis of Fentanyl/Analogs, Naloxone, and Clinical Features of Non-Fatal Opioid Overdose
Sentanyl II:芬太尼/类似物、纳洛酮的多状态分析以及非致命阿片类药物过量的临床特征
  • 批准号:
    10904337
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Optical Analogs to MRI Contrast Agents for Surgical Guidance of Brain Tumor Resection
MRI 造影剂的光学类似物用于脑肿瘤切除手术指导
  • 批准号:
    10530702
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Optical analogs to MRI contrast agents for surgical guidance of brain tumor resection
MRI 造影剂的光学类似物用于脑肿瘤切除术的手术指导
  • 批准号:
    10331016
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Development of new therapies for cancer and other diseases and conditions using analogs of growth hormone-releasing hormones (GHRH)
使用生长激素释放激素 (GHRH) 类似物开发癌症和其他疾病和病症的新疗法
  • 批准号:
    10013922
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Development of new therapies for cancer and other diseases and conditions using analogs of growth hormone-releasing hormones (GHRH)
使用生长激素释放激素 (GHRH) 类似物开发癌症和其他疾病和病症的新疗法
  • 批准号:
    10176142
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Development of new therapies for cancer and other diseases and conditions using analogs of growth hormone-releasing hormones (GHRH)
使用生长激素释放激素 (GHRH) 类似物开发癌症和其他疾病和病症的新疗法
  • 批准号:
    10454832
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Development of new therapies for cancer and other diseases and conditions using analogs of growth hormone-releasing hormones (GHRH)
使用生长激素释放激素 (GHRH) 类似物开发癌症和其他疾病和病症的新疗法
  • 批准号:
    10618858
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Optimization and Investigation of Cruentaren A analogs
Cruentaren A 类似物的优化和研究
  • 批准号:
    9902368
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Optimization and Investigation of Cruentaren A analogs
Cruentaren A 类似物的优化和研究
  • 批准号:
    9454428
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Optimization and Investigation of Cruentaren A analogs
Cruentaren A 类似物的优化和研究
  • 批准号:
    10078544
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了