High Performance Energy Storage Electrodes through Oxide Electrodeposition in Carbon Nanotube Fabric Scaffolds
通过碳纳米管织物支架中氧化物电沉积的高性能储能电极
基本信息
- 批准号:1901906
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports research to investigate the manufacturing of advanced electrochemical energy storage electrodes, furthering both science and engineering and thereby enhancing national prosperity and security. There is increased demand for electrochemical energy storage systems that can provide both high power and high energy densities for applications ranging from portable electronics to electric vehicles. This type of performance is difficult to achieve with electrodes made via slurry-casting, by far the most common manufacturing process. Nanostructured electrode architectures can achieve high power and high energy densities, as has been widely discussed in the scientific literature. However, these nanostructured electrodes usually require many complex processing steps with unknown reproducibility and scalability. This research project studies manufacturing design principles for the electrodeposition of transition metal oxides onto aligned carbon nanotube fabrics. This new process enables the controllable and scalable fabrication of high-performance nanostructured energy storage electrodes. The fundamental understanding developed as part of this research is applicable to a wide range of oxide-based and electrodeposited energy storage materials, thus benefitting the U.S. economy and society. In addition to training of graduate students, the education plan of the project includes the development of a 'Materials Manufacturing Design Principles' course module, instructions for which will be shared on publicly-accessible websites. The overarching goal of this research is to develop and understand the manufacturing design principles that yield nanostructured aligned carbon nanotube fabric and transition metal oxide electrochemical energy storage electrodes with high power and high energy densities. Achieving this goal overcomes the technical barriers that are typically faced in the scale-up of nanostructured electrodes and provides a transformative route for energy storage processing with the potential for far-reaching industrial impact. Manufacturing design principles are applied to the nanomaterial synthesis and assembly, specifically, reducing the number of materials and processing steps for predictable assembly, utilizing surface functionalization to enable material self-location and self-adhesion, and enabling modularity. The researchers utilize advanced materials characterization techniques to determine the relationships between processing and electrode architecture, composition, and electrochemical performance. Finite-element modeling is utilized to correlate the electrode microstructure, such as oxide grain size or thickness, with the extent of electrochemical intercalation. The fundamental understanding from this research leads to predictive control over nanostructured energy storage architectures with both high power and high energy densities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金支持研究先进的电化学储能电极的制造,促进科学和工程,从而提高国家的繁荣和安全。对于可以为从便携式电子设备到电动车辆的应用提供高功率和高能量密度的电化学能量存储系统的需求增加。这种类型的性能是难以实现的电极通过浆料铸造,迄今为止最常见的制造工艺。纳米结构化电极架构可以实现高功率和高能量密度,如在科学文献中已经广泛讨论的。然而,这些纳米结构的电极通常需要许多复杂的加工步骤,具有未知的再现性和可扩展性。本研究计画系探讨将过渡金属氧化物电沉积于碳奈米管织物上之制程设计原则。这种新工艺能够可控和可扩展地制造高性能纳米结构储能电极。作为这项研究的一部分,开发的基本理解适用于各种氧化物基和电沉积储能材料,从而使美国经济和社会受益。除了培训研究生外,该项目的教育计划还包括开发“材料制造设计原理”课程模块,其说明将在公开网站上共享。本研究的总体目标是开发和理解生产纳米结构排列的碳纳米管织物和过渡金属氧化物电化学能量存储电极的制造设计原则,具有高功率和高能量密度。实现这一目标克服了在纳米结构电极的规模化过程中通常面临的技术障碍,并为储能处理提供了一条具有深远工业影响潜力的变革性途径。制造设计原理应用于纳米材料合成和组装,具体地说,减少用于可预测组装的材料和加工步骤的数量,利用表面功能化使材料自定位和自粘附,并实现模块化。研究人员利用先进的材料表征技术来确定加工与电极结构、组成和电化学性能之间的关系。利用电化学元素建模来关联电极的微观结构,如氧化物晶粒尺寸或厚度,与电化学嵌入的程度。这项研究的基本理解导致了对高功率和高能量密度的纳米结构储能架构的预测控制。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mesoscale Machine Learning Analytics for Electrode Property Estimation
- DOI:10.1021/acs.jpcc.2c04432
- 发表时间:2022-09-01
- 期刊:
- 影响因子:3.7
- 作者:Kabra, Venkatesh;Birn, Brennan;Mukherjee, Partha P.
- 通讯作者:Mukherjee, Partha P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Veronica Augustyn其他文献
Protons undermine lithium-ion batteries with positively disastrous results
质子会破坏锂离子电池,产生具有积极灾难性的结果
- DOI:
10.1038/s41557-025-01733-y - 发表时间:
2025-01-29 - 期刊:
- 影响因子:20.200
- 作者:
Noah P. Holzapfel;Veronica Augustyn - 通讯作者:
Veronica Augustyn
Electrochemical reactivity of atomic and molecular species under solid-state confinement
固态限域下原子和分子物种的电化学反应性
- DOI:
10.1016/j.coelec.2022.101014 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:6.900
- 作者:
Jenelle Fortunato;Jack W. Jordan;Graham N. Newton;Darren A. Walsh;Veronica Augustyn - 通讯作者:
Veronica Augustyn
Tuning the interlayer of transition metal oxides for electrochemical energy storage
- DOI:
10.1557/jmr.2016.337 - 发表时间:
2016-10-03 - 期刊:
- 影响因子:2.900
- 作者:
Veronica Augustyn - 通讯作者:
Veronica Augustyn
Veronica Augustyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Veronica Augustyn', 18)}}的其他基金
Collaborative Research: DMREF: Design of Superionic Conductors by Tuning Lattice Dynamics
合作研究:DMREF:通过调整晶格动力学设计超离子导体
- 批准号:
2119377 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Understanding Ion Transport in Solvated Layered Oxides for Electrochemical Energy Storage
职业:了解用于电化学储能的溶剂化层状氧化物中的离子传输
- 批准号:
1653827 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
度量测度空间上基于狄氏型和p-energy型的热核理论研究
- 批准号:QN25A010015
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
- 批准号:
2902122 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Studentship
Folding polymers for high-performance energy storage
用于高性能储能的折叠聚合物
- 批准号:
DP230100642 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Elucidation of the oxygen storage/release reaction mechanism of large-capacity oxygen storage materials and performance improvement for realizing energy-saving oxygen production
阐明大容量储氧材料储放氧反应机理及性能改进实现节能制氧
- 批准号:
23KJ0033 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improvement of Electric Vehicles Performance using Energy Storage Systems with High Specific Power
使用高比功率储能系统提高电动汽车性能
- 批准号:
RGPIN-2017-05924 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
The Impact of Subsurface Heterogeneity on the Performance of Aquifer Thermal Energy Storage (ATES) Systems
地下非均质性对含水层热能储存 (ATES) 系统性能的影响
- 批准号:
2788219 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Thermochemical energy storage systems: mathematical modelling and experimental evaluation of materials and prototype systems performance
热化学储能系统:材料和原型系统性能的数学建模和实验评估
- 批准号:
2687658 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Dynamic alkali metal alloys for low cost, high performance energy storage
用于低成本、高性能储能的动态碱金属合金
- 批准号:
RGPIN-2021-02819 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Low Cost and High-Performance Sodium-ion Batteries for Grid Energy Storage toward Reducing Greenhouse Gas Emission
低成本高性能钠离子电池用于电网储能以减少温室气体排放
- 批准号:
576927-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alliance Grants
Sustainable Energy Storage and Conversion: from Performance of Materials to Prototype Development
可持续能源存储和转换:从材料性能到原型开发
- 批准号:
RGPIN-2019-04944 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
High-performance ultra-low-carbon Geopolymer heat Battery for thermochemical energy storage in net-zero buildings (GeoBattery)
用于净零建筑热化学储能的高性能超低碳地质聚合物热电池(GeoBattery)
- 批准号:
EP/W010828/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant