Optical Waveguide Lattices with Novel Transmission Properties Towards Enhanced Energy Conversion in Solar Cells
具有新颖传输特性的光波导晶格可增强太阳能电池的能量转换
基本信息
- 批准号:1903592
- 负责人:
- 金额:$ 37.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports research that contributes to new knowledge related to optical materials for increased solar energy capture, thereby promoting progress in renewable, clean energy. The proposed optical structure consists of periodic arrays of light collecting elements created in polymer materials. The polymer consists of a blend of components that are synthetically organized into periodic structures that can control light transmission. When coated over a solar cell, this structure promises to convert more light into electricity. This would result in the generation of more power as compared to current solar cells, as well as mitigation of energy losses that have persisted in solar cell technologies. This material structure is also a low-cost alternative to more complicated and costly solar cell coatings. This award supports fundamental research on the structure-property relationships of this new material structure, particularly on how it collects light, as well as fundamental property-function relationships to increase energy conversion in solar cells. Studies of light transmission and solar cell output are performed, with optical simulations used to confirm experimental findings. The award also supports the education of high school and undergraduate students and helps broaden participation of underrepresented groups in research.Broadband optical waveguide lattices show the capability of collecting light from a broad angular incident range and transmitting it in a single direction. This capability to control light collection and transmission is attractive as a potential strategy to meet the critical need to manage light propagation and collection in optical devices, such as for increasing energy conversion and reducing losses in industry-standard front contact solar cells. The goal of this project is to prepare, characterize, and study multiple waveguide lattices created in polymer thin films as solar cell coatings, with the experimental objective to demonstrate a wide angular collection window for light, to thereby increase energy conversion. The structures are produced through irradiation of a photoreactive binary component polymer blend with arrays of microscale optical beams, which in turn form multiple arrays of broadband cylindrical optical waveguides. This research elucidates structure-property correlations between the waveguide lattices and their light transmission and collection characteristics, as well as investigates increases in external quantum efficiency and current density in front contact silicon solar cells when the structures are employed as the encapsulation layer. Such correlations are established by carrying out angle-resolved transmission and energy conversion measurements over the full solar spectrum and as a function of the waveguide lattice parameters, as well as through corroborative theoretical studies of light transmission using Beam Propagation simulations. This research promises to advance the capability to control the optical transmission properties of materials, with the potential to increase solar energy conversion, thereby advancing renewable, clean energy production. The educational activities of this award will seek to enhance high school education by providing research experiences, as well as advancing undergraduate education in materials science through interactive experiments. Education and recruitment efforts will focus on groups underrepresented in STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款支持有助于增加太阳能捕获的光学材料相关新知识的研究,从而促进可再生、清洁能源方面的进展。所提出的光学结构由在聚合物材料中创建的光收集元件的周期性阵列组成。这种聚合物由多种成分组成,这些成分被合成地组织成周期性结构,可以控制光的传输。当覆盖在太阳能电池上时,这种结构有望将更多的光转化为电能。与目前的太阳能电池相比,这将产生更多的电力,并缓解太阳能电池技术中持续存在的能量损失。这种材料结构也是更复杂、更昂贵的太阳能电池涂层的低成本替代方案。该奖项支持对这种新材料结构的结构-性质关系的基础研究,特别是关于它如何收集光线的基础研究,以及提高太阳能电池能量转化的基本性质-功能关系。对光传输和太阳能电池输出进行了研究,并使用光学模拟来证实实验结果。该奖项还支持高中生和本科生的教育,并帮助未被充分代表的群体更广泛地参与研究。宽带光波导晶格显示出从大角度入射范围收集光并将其单向传输的能力。这种控制光收集和传输的能力是一种潜在的策略,以满足管理光学设备中的光传播和收集的关键需求,例如提高行业标准正面接触太阳能电池的能量转换和降低损耗。该项目的目标是制备、表征和研究在聚合物薄膜中创建的多个波导晶格作为太阳能电池涂层,实验目标是展示一个宽角度的光收集窗口,从而提高能量转换。这些结构是通过将光反应性二元组分聚合物与微尺度光束阵列混合,进而形成多个宽带圆柱形光波导阵列来产生的。本研究阐明了波导晶格与其光传输和光收集特性之间的结构-性质关系,并研究了采用该结构作为封装层时,前接触硅太阳电池的外量子效率和电流密度的提高。这种关联是通过在整个太阳光谱上进行角度分辨的传输和能量转换测量并作为波导晶格参数的函数来建立的,以及通过使用光束传播模拟对光传输进行确证的理论研究来建立的。这项研究有望提高控制材料光传输特性的能力,有可能提高太阳能转换,从而促进可再生、清洁能源的生产。该奖项的教育活动将寻求通过提供研究经验来加强高中教育,以及通过互动实验促进材料科学的本科教育。教育和招聘工作将集中在STEM中代表性不足的群体。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microfiber Optic Arrays as Top Coatings for Front-Contact Solar Cells toward Mitigation of Shading Loss
- DOI:10.1021/acsami.9b17803
- 发表时间:2019-12-18
- 期刊:
- 影响因子:9.5
- 作者:Chen, Fu-Hao;Biria, Saeid;Hosein, Ian D.
- 通讯作者:Hosein, Ian D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Hosein其他文献
Transforming travel and border controls: Checkpoints in the Open Society
- DOI:
10.1016/j.giq.2006.01.002 - 发表时间:
2005-01-01 - 期刊:
- 影响因子:
- 作者:
Ian Hosein - 通讯作者:
Ian Hosein
Ian Hosein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Hosein', 18)}}的其他基金
CAREER: Fabrication of Composite Material Structures using Light-Induced Self Writing
职业:利用光诱导自写入技术制造复合材料结构
- 批准号:
1751621 - 财政年份:2018
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
相似海外基金
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
- 批准号:
2335927 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
- 批准号:
23H01882 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
U.S.-Ireland R&D Partnership - Visible Light-wave Generation and Manipulation through Non-Linear Waveguide Technology (VIBRANT)
美国-爱尔兰 R
- 批准号:
2310869 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
New Design and Manufacture Technologies for High-Performance Millimetre-Wave and Terahertz Waveguide Devices for Space and Terrestrial Communications
用于空间和地面通信的高性能毫米波和太赫兹波导器件的新设计和制造技术
- 批准号:
EP/Y016580/1 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Fellowship
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Theory and Simulations of Photonic Waveguide Quantum Electrodynamic Circuits
光子波导量子电动电路的理论与仿真
- 批准号:
569953-2022 - 财政年份:2022
- 资助金额:
$ 37.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Evaluation of thickness reduction of a high-temperature pipe by an inspection system using guided wave travelling into a pipe with a long waveguide under normal temperature
利用导波在常温下进入长波导管道的检测系统评估高温管道的减薄情况
- 批准号:
22K03817 - 财政年份:2022
- 资助金额:
$ 37.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Near-infrared light delivery in deep tissue using vivo helical optical waveguide formed by a topological ultrasound beam
使用由拓扑超声波束形成的体内螺旋光波导在深部组织中传输近红外光
- 批准号:
22K18436 - 财政年份:2022
- 资助金额:
$ 37.44万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Waveguide quantum electrodynamics on superconducting circuits and its applications
超导电路中的波导量子电动力学及其应用
- 批准号:
22H04937 - 财政年份:2022
- 资助金额:
$ 37.44万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227459 - 财政年份:2022
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant














{{item.name}}会员




