Nanoscale Nonlinear Terahertz Spectroscopy
纳米级非线性太赫兹光谱
基本信息
- 批准号:1904280
- 负责人:
- 金额:$ 44.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As semiconducting devices become smaller and smaller, the question of how electrons move on shorter and shorter time scales becomes increasingly important. One way to investigate this question is to measure the radiation that is emitted by electrons which have been rapidly accelerated, as would typically be the case in a small device with a fast response. In many situations, it is possible to induce this rapid charge acceleration using a very short pulse of light (i.e., of 100 femtosecond duration); in this case, the emitted radiation typically falls in the terahertz range of the spectrum. Measuring this emitted terahertz radiation, a technique known as "laser terahertz emission spectroscopy" (or LTEM), has proven to be a very powerful method for studying many different kinds of materials, elucidating the earliest dynamical processes which influence the motion of charges in solids. However, it has an important limitation: since there is a limit to how tightly one can focus visible light, the spatial resolution of LTEM is limited to a few microns or larger (that is, the size of the optical spot on the sample). As a result, it has not been possible to leverage this spectroscopic tool in the study of single nanostructures, since they are far too small to be individually addressed by the incident light pulse. In this research program, we will develop a new way to apply LTEM which overcomes this limited spatial resolution. Our technique, which is based on scattering the terahertz radiation from a very small metal tip held near the sample's surface, will improve the spatial resolution of LTEM by three orders of magnitude. This will open up an entirely new realm of nanoscale phenomena for study using LTEM techniques. For example, we will study emerging photovoltaic materials, to see if the crystalline grain boundaries have a significant influence on charge transport which could limit their overall efficiency. We will study nanosized electronic materials such as gallium nitride, where surface defects and interfacial disorder are thought to strongly influence their performance. These measurements will reveal the fundamental physics of charge transport in many different materials, with both nanoscale spatial resolution and sub-picosecond temporal resolution.Technical description: The proposed research attacks the challenge of coupling millimeter and terahertz waves to nanostructures in a novel way, by using a scattering-type near-field microscope to implement tip-mediated nonlinear optics. Our preliminary work established for the first time the feasibility of tip-mediated terahertz generation (a second-order nonlinear optical process). Building on this early work, we will establish nanoscale laser terahertz emission microscopy as a valuable and versatile tool for spectroscopy of nanomaterials and nanostructures. We will develop several new methods for studying material systems based on this idea, including locally applied electric field bias modulation, and tapping amplitude modulation for studying buried interfaces. We will also broaden the scope of these techniques by combining them with a time-delayed pump pulse, for time-resolved studies of the evolution of the terahertz nonlinearities. This will all be done with a tip-size-limited spatial resolution of ~10 nanometers. Our work will bring the full power of both linear and nonlinear terahertz science to the realm of nanomaterials. We will use these new techniques to study several different material systems, including organometallic halide perovskites and GaN nanostructures and heterostructures. As well as answering open questions about the role of nanoscale morphology in charge transport in these important materials, these measurements will also serve as demonstrations of the power and versatility of this newly developed spectroscopic approach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着半导体器件变得越来越小,电子如何在越来越短的时间尺度上移动的问题变得越来越重要。研究这个问题的一种方法是测量快速加速的电子发射的辐射,这通常是一个快速响应的小型设备的情况。在许多情况下,可以使用非常短的光脉冲(即,持续时间为100飞秒);在这种情况下,发射的辐射通常福尔斯在光谱的太赫兹范围内。测量这种发射的太赫兹辐射,一种被称为“激光太赫兹发射光谱”(或LTEM)的技术,已被证明是研究许多不同种类材料的一种非常强大的方法,阐明了影响固体中电荷运动的最早动力学过程。然而,它有一个重要的局限性:由于对可见光的聚焦程度有限制,LTEM的空间分辨率被限制在几微米或更大(即样品上光斑的大小)。因此,在单个纳米结构的研究中不可能利用这种光谱工具,因为它们太小而无法通过入射光脉冲单独寻址。在这项研究计划中,我们将开发一种新的方法来应用LTEM,克服这种有限的空间分辨率。我们的技术,这是基于散射的太赫兹辐射从一个非常小的金属尖端附近举行的样品的表面,将提高空间分辨率的LTEM的三个数量级。这将为使用LTEM技术的研究开辟纳米尺度现象的全新领域。例如,我们将研究新兴的光伏材料,看看晶粒边界是否对电荷传输有重大影响,这可能会限制它们的整体效率。我们将研究纳米电子材料,如氮化镓,其中表面缺陷和界面无序被认为是强烈影响其性能。这些测量将揭示许多不同材料中电荷输运的基本物理,具有纳米级空间分辨率和亚皮秒时间分辨率。技术描述:拟议的研究以一种新的方式攻击将毫米波和太赫兹波耦合到纳米结构的挑战,通过使用散射型近场显微镜实现尖端介导的非线性光学。我们的初步工作首次建立了尖端介导的太赫兹产生(二阶非线性光学过程)的可行性。在这项早期工作的基础上,我们将建立纳米级激光太赫兹发射显微镜作为纳米材料和纳米结构光谱学的一种有价值的通用工具。基于这一思想,我们将开发几种研究材料系统的新方法,包括局部施加的电场偏置调制,以及用于研究掩埋界面的抽头振幅调制。我们还将扩大这些技术的范围,通过将它们与时间延迟的泵浦脉冲相结合,用于太赫兹非线性演化的时间分辨研究。这一切都将以~10纳米的尖端尺寸限制的空间分辨率来完成。我们的工作将把线性和非线性太赫兹科学的全部力量带到纳米材料领域。我们将使用这些新技术来研究几种不同的材料系统,包括有机金属卤化物钙钛矿和GaN纳米结构和异质结构。除了回答关于纳米级形态在这些重要材料中电荷传输的作用的公开问题外,这些测量还将作为这种新开发的光谱方法的能力和多功能性的展示。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlocal Time-Resolved Terahertz Spectroscopy in the Near Field
- DOI:10.1021/acsphotonics.1c01367
- 发表时间:2021-10-01
- 期刊:
- 影响因子:7
- 作者:Pizzuto, Angela;Castro-Camus, Enrique;Mittleman, Daniel M.
- 通讯作者:Mittleman, Daniel M.
Nanoscale-Resolved Spatial Mapping of Tip-Mediated Terahertz Emission from Semiconductors
- DOI:10.1007/s10762-023-00908-3
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:A. Pizzuto;E. Castro-Camus;D. Mittleman
- 通讯作者:A. Pizzuto;E. Castro-Camus;D. Mittleman
Anomalous Contrast in Broadband THz Near-Field Imaging of Gold Microstructures
- DOI:10.1364/oe.423528
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:A. Pizzuto;Xinzhong Chen;Hai Hu;Qing Dai;Mengkun Liu;D. Mittleman
- 通讯作者:A. Pizzuto;Xinzhong Chen;Hai Hu;Qing Dai;Mengkun Liu;D. Mittleman
Laser THz emission nanoscopy and THz nanoscopy
- DOI:10.1364/oe.382130
- 发表时间:2020-06-22
- 期刊:
- 影响因子:3.8
- 作者:Pizzuto, Angela;Mittleman, Daniel M.;Klarskov, Pernille
- 通讯作者:Klarskov, Pernille
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Mittleman其他文献
A tunable terahertz response
一种可调谐的太赫兹响应
- DOI:
10.1038/nphoton.2008.58 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:32.900
- 作者:
Daniel Mittleman - 通讯作者:
Daniel Mittleman
Daniel Mittleman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Mittleman', 18)}}的其他基金
Nonlocal Terahertz Nanospectroscopy and Nanoimaging
非局域太赫兹纳米光谱和纳米成像
- 批准号:
2300152 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
- 批准号:
2211616 - 财政年份:2022
- 资助金额:
$ 44.12万 - 项目类别:
Continuing Grant
Collaborative: Terahertz Spectroscopy of Clathrates
合作:包合物的太赫兹光谱
- 批准号:
2055417 - 财政年份:2021
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Large: Scaling WLANs to TB/sec: THz Spectrum, Architectures, and Control
合作研究:CNS 核心:大型:将 WLAN 扩展到 TB/秒:太赫兹频谱、架构和控制
- 批准号:
1954780 - 财政年份:2020
- 资助金额:
$ 44.12万 - 项目类别:
Continuing Grant
SpecEES: Collaborative Research: Efficient and Secure Access to Spectrum up to THz
SpecEES:协作研究:高效、安全地访问高达太赫兹的频谱
- 批准号:
1923733 - 财政年份:2019
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
OP: A new THz technology: artificial dielectrics
OP:一种新的太赫兹技术:人造电介质
- 批准号:
1609521 - 财政年份:2016
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
Terahertz Plasmonics for Linear and Nonlinear Spectroscopy and Sensing
用于线性和非线性光谱和传感的太赫兹等离子体
- 批准号:
1505536 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
Conference Support for IRMMW-THz 2011: The 36th International Conference on Infrared, Millimeter, and Terahertz Waves, held in Houston, TX on October 2-7, 2011.
IRMMW-THz 2011 会议支持:第 36 届国际红外、毫米波和太赫兹波会议,于 2011 年 10 月 2-7 日在德克萨斯州休斯顿举行。
- 批准号:
1119051 - 财政年份:2011
- 资助金额:
$ 44.12万 - 项目类别:
Standard Grant
相似海外基金
Setup for nonlinear multi-terahertz spectroscopy
非线性多太赫兹光谱设置
- 批准号:
497211903 - 财政年份:2022
- 资助金额:
$ 44.12万 - 项目类别:
Major Research Instrumentation
Study of nonlinear terahertz response in Weyl semimetals with broken inversion symmetry
反演对称性破缺的Weyl半金属非线性太赫兹响应研究
- 批准号:
21K13858 - 财政年份:2021
- 资助金额:
$ 44.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultrafast Optical and Terahertz Nonlinear, Strong Field Nanoplasmonics
超快光学和太赫兹非线性、强场纳米等离子体激元
- 批准号:
203194-2013 - 财政年份:2019
- 资助金额:
$ 44.12万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Optical and Terahertz Nonlinear, Strong Field Nanoplasmonics
超快光学和太赫兹非线性、强场纳米等离子体激元
- 批准号:
203194-2013 - 财政年份:2018
- 资助金额:
$ 44.12万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Optical and Terahertz Nonlinear, Strong Field Nanoplasmonics
超快光学和太赫兹非线性、强场纳米等离子体激元
- 批准号:
203194-2013 - 财政年份:2017
- 资助金额:
$ 44.12万 - 项目类别:
Discovery Grants Program - Individual
New development of nonlinear photoelectronics based on terahertz strong field physics
基于太赫兹强场物理的非线性光电子学新进展
- 批准号:
17H06124 - 财政年份:2017
- 资助金额:
$ 44.12万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Ultrafast Optical and Terahertz Nonlinear, Strong Field Nanoplasmonics
超快光学和太赫兹非线性、强场纳米等离子体激元
- 批准号:
203194-2013 - 财政年份:2016
- 资助金额:
$ 44.12万 - 项目类别:
Discovery Grants Program - Individual
Coherent, tuned terahertz photons from nonlinear processes in graphene
来自石墨烯非线性过程的相干、调谐太赫兹光子
- 批准号:
DP160101474 - 财政年份:2016
- 资助金额:
$ 44.12万 - 项目类别:
Discovery Projects
Broadband generation and detection of terahertz waves by nonlinear metamaterials
非线性超材料产生和检测太赫兹波的宽带
- 批准号:
16H06025 - 财政年份:2016
- 资助金额:
$ 44.12万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Evaluation of hydrogen-bonding distance in organic nonlinear optical crystals by neutron diffraction for high-transmitted terahertz-wave source
高透射太赫兹波源中子衍射评价有机非线性光学晶体氢键距离
- 批准号:
15K20880 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




