Transition Metal Pnictide Nanoparticles for Energy-Relevant Applications

用于能源相关应用的过渡金属磷化物纳米颗粒

基本信息

  • 批准号:
    1904775
  • 负责人:
  • 金额:
    $ 46.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThrough this research project, which is supported by the Solid State and Materials Chemistry program at NSF, new materials for magnetic refrigeration (MR) that exploit earth-abundant transition metal phosphide, arsenide or antimonide nanoparticles are established. Traditional refrigeration and air-conditioning are based on the compression and expansion of an inert gas in a process that consumes a whopping 17% of the electrical energy consumed globally. In addition to being energy intensive, inevitable refrigerant leaks of the hydrochlorofluorocarbon gases (HCFs) are projected to contribute 13% of the global greenhouse gas emissions by 2030. Magnetic refrigeration is a process that relies on magnetic polarization within a solid material (not a gas) to absorb and release heat. While MR is theoretically capable of 50% more energy-efficient refrigeration than standard vapor-compression approaches, it is not widely adopted yet. This is due in part to an absence of materials that are simultaneously (1) high-performing in the temperature region of interest, (2) can be efficiently cycled with minimal energy losses, (3) are inexpensive, and (4) are based upon materials with high natural abundance. Some earth-abundant materials known to be active for MR but are not routinely used because of inefficiencies from cycling losses. As part of this project these materials are prepared as nanoparticles. Prof. Brock and her group at Wayne State University expect the decrease in the size of the particles to reduce barriers for magnetic polarization, thereby enabling efficient cycling. To evaluate this hypothesis, the researchers carry out tests on a series of structurally-related materials with different compositions as part of this project. In addition to providing key insights to the development of viable MR technologies, the project also includes training and mentoring of students in interdisciplinary collaborative research and introduction of Detroit-area 6th-9th grade students, many of which are minorities, to materials chemistry through hands-on activities for outreach events.TECHNICAL SUMMARYWith support from the Solid State and Materials Chemistry program at NSF this project establishes the fundamental characteristics of transition metal pnictide (pnicogen = Group 15 element) nanomaterials relevant to alternative energy applications, specifically focusing on magnetic refrigeration (MR). Many transition metal pnictide materials are well-suited to MR applications, displaying a large magnetocaloric effect (MCE, a large change in magnetic entropy during polarization and depolarization) near room temperature. The largest effects are associated with first-order (abrupt) phase transitions from the ferromagnetic to the paramagnetic state at TC, but these are also quite sharp (do not span the temperature range of interest). Nanostructuring has been suggested as a means to broaden the temperature range over which MCE is maximized; blending particles with differing TC's to extend the temperature range over which appreciable magnetic entropy can be attained. In this project, "materials opportunities" in the search for functional magnetocalorics among nanoscale transition metal pnictides, are pursued via three aims. In Aim 1, magnetic entropy data is collected on P-doped MnAs nanoparticle samples and correlated to single particle magnetic force microscopy data to discern how polydispersity affects the ensemble behavior of the samples, in terms of producing uniform magnetic entropy responses over large temperature ranges. In Aim 2, a relative reactivity scale for metal precursors with P (trioctylphosphine), is created as a way to design new, more complex MCE materials (ternary and quaternary phosphide phases). Finally, in Aim 3 intrinsic challenges that face the exploitation of nanomaterials for magnetic refrigeration are addressed, including reduction of the magnetic entropy due to surface oxidation. Insights from the reduction strategy are leveraged to target new antimonide phase for MR. In addition to providing key insights to the development of viable MR technologies, the project also includes training and mentoring of students in interdisciplinary collaborative research and introduction of Detroit-area 6th-9th grade students, many of which are minorities, to materials chemistry through a hands-on activity based on liquid crystal sensors for the annual Wayne State University STEM day event.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目由美国国家科学基金会固态与材料化学项目资助,利用地球上丰富的过渡金属磷化物、砷化物或锑化物纳米颗粒,建立了用于磁制冷(MR)的新材料。传统的制冷和空调是基于惰性气体的压缩和膨胀,这一过程消耗了全球17%的电能。除能源密集型外,预计到2030年,不可避免的制冷剂氟氯烃气体泄漏将占全球温室气体排放量的13%。磁制冷是一种依靠固体材料(不是气体)内部的磁极化来吸收和释放热量的过程。虽然MR在理论上比标准的蒸汽压缩方法节能50%,但它还没有被广泛采用。这部分是由于缺乏同时(1)在感兴趣的温度区域具有高性能的材料,(2)可以以最小的能量损失有效地循环,(3)价格低廉,(4)基于具有高天然丰度的材料。一些地球上储量丰富的材料已知对MR有活性,但由于循环损耗而效率低下,因此没有常规使用。作为这个项目的一部分,这些材料被制备成纳米颗粒。布洛克教授和她在韦恩州立大学的研究小组预计,颗粒尺寸的减小可以减少磁极化的障碍,从而实现有效的循环。为了评估这一假设,作为该项目的一部分,研究人员对一系列具有不同成分的结构相关材料进行了测试。除了为可行的磁共振技术的发展提供关键见解外,该项目还包括对学生进行跨学科合作研究的培训和指导,并通过实践活动向底特律地区的6 -9年级学生(其中许多是少数民族)介绍材料化学。在美国国家科学基金会固态和材料化学项目的支持下,该项目建立了与替代能源应用相关的过渡金属pnictide (pnicogen =第15族元素)纳米材料的基本特性,特别是专注于磁制冷(MR)。许多过渡金属微粒材料非常适合于磁共振应用,在室温附近显示出很大的磁热效应(MCE,在极化和退极化期间磁熵的大变化)。最大的影响与从铁磁到顺磁状态的一阶(突然)相变有关,但这些也相当尖锐(不跨越感兴趣的温度范围)。纳米结构被认为是扩大MCE最大化温度范围的一种手段;混合具有不同TC的粒子,以扩大可以获得可观磁熵的温度范围。在这个项目中,在纳米级过渡金属化合物中寻找功能磁热学的“材料机会”有三个目标。在Aim 1中,收集了p掺杂MnAs纳米颗粒样品的磁熵数据,并将其与单颗粒磁力显微镜数据相关联,以辨别多分散性如何影响样品的系综行为,在大温度范围内产生均匀的磁熵响应。在Aim 2中,创建了具有P(三辛基膦)的金属前体的相对反应性尺度,作为设计新的,更复杂的MCE材料(三元和四相磷化物)的一种方法。最后,在Aim 3中,解决了用于磁制冷的纳米材料开发所面临的内在挑战,包括由于表面氧化而导致的磁熵降低。除了为可行的MR技术的发展提供关键见解外,该项目还包括在跨学科合作研究中培训和指导学生,并引入底特律地区6 -9年级的学生,其中许多是少数民族。在一年一度的韦恩州立大学STEM日活动中,通过基于液晶传感器的动手活动来了解材料化学。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic Fe 1.3 Ni 0.7 P Aerogels Prepared from Nanoparticle Assembly: The Functional Whole Is the Sum of Its Parts
由纳米粒子组装制备的磁性 Fe 1.3 Ni 0.7 P 气凝胶:功能整体是其各部分的总和
  • DOI:
    10.1021/acs.jpcc.1c08709
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hettiarachchi, Malsha A.;Su’a, Tepora;Ramzan, Ali-hamza;Pokhrel, Shiva;Nadgorny, Boris;Brock, Stephanie L.
  • 通讯作者:
    Brock, Stephanie L.
Electrochemical gelation of quantum dots using non-noble metal electrodes at high oxidation potentials
  • DOI:
    10.1039/d1nr06615c
  • 发表时间:
    2021-11-30
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Hewa-Rahinduwage, Chathuranga C.;Silva, Karunamuni L.;Luo, Long
  • 通讯作者:
    Luo, Long
Quantum Dot Assembly Driven by Electrochemically Generated Metal-Ion Crosslinkers
  • DOI:
    10.1021/acs.chemmater.1c00832
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Hewa-Rahinduwage, Chathuranga C.;Silva, Karunamuni L.;Luo, Long
  • 通讯作者:
    Luo, Long
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Brock其他文献

Stephanie Brock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Brock', 18)}}的其他基金

MRI: Acquisition of a Field Emission Transmission Electron Microscope to Enable Multidisciplinary Materials Research, Education and Outreach, in Detroit
MRI:在底特律购买场发射透射电子显微镜以实现多学科材料研究、教育和推广
  • 批准号:
    2018587
  • 财政年份:
    2020
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Standard Grant
Establishing a Chemical Toolbox for Programmed Assembly of Metal Chalcogenide Nanoparticles into "Wired" Architectures
建立化学工具箱,用于将金属硫族化物纳米粒子编程组装成“有线”结构
  • 批准号:
    1709776
  • 财政年份:
    2017
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Standard Grant
Nanoscale Transition Metal Pnictides: Materials by Design
纳米级过渡金属磷化物:设计材料
  • 批准号:
    1361470
  • 财政年份:
    2014
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Atomic Level Properties of Nanoscale Metal Phosphide Catalysts for Heteroatom Removal Reactions
SusChEM:合作研究:用于杂原子去除反应的纳米级金属磷化物催化剂的原子级特性
  • 批准号:
    1361741
  • 财政年份:
    2014
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Continuing Grant
Structure-Property Relationships in Transition-Metal Pnictides Confined to Nanoscale Dimensions
纳米尺度过渡金属磷族化合物的结构-性能关系
  • 批准号:
    1064159
  • 财政年份:
    2011
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Standard Grant
Transition Metal Pnictide Nanoparticles: Synthesis and Assembly of Novel Magnetic Materials
过渡金属磷化物纳米粒子:新型磁性材料的合成与组装
  • 批准号:
    0701161
  • 财政年份:
    2007
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Continuing Grant
CAREER: Synthesis and Structure-Property Elucidation of III-V Based Magnetic Semiconductor Nanoparticles
职业:III-V族磁性半导体纳米颗粒的合成和结构性能阐明
  • 批准号:
    0094273
  • 财政年份:
    2001
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Continuing Grant

相似国自然基金

Mn-Ni-Cu系all-d-metal Heusler合金的设计制备与磁性形状记忆效 应研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Metal-Na2WO4/SiO2催化甲烷氧化偶联的密度泛函理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Metal@ZnO-WO3复合纳米纤维微结构调控及对人呼气检测研究
  • 批准号:
    61901293
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
d-metal Heusler磁相变合金NiMnTi(Co)的多相变路径弹热效应研究
  • 批准号:
    51801225
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
狭叶香蒲重金属转运蛋白HMA(Heavy Metal ATPase)类基因的分离鉴定及功能分析
  • 批准号:
    31701931
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Studentship
Tungsten Biocatalysis - Heavy Metal Enzymes for Sustainable Industrial Biocatalysis
钨生物催化 - 用于可持续工业生物催化的重金属酶
  • 批准号:
    10097682
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    EU-Funded
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Research Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Standard Grant
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
  • 批准号:
    2338178
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Continuing Grant
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
  • 批准号:
    2335454
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Standard Grant
Transition Metal - Main Group Multiple Bonding
过渡金属 - 主族多重键合
  • 批准号:
    2349123
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Standard Grant
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
  • 批准号:
    24K17650
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
  • 批准号:
    2340234
  • 财政年份:
    2024
  • 资助金额:
    $ 46.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了