Non-linear THz optical effects as a probe of Berry's phase in topological materials

非线性太赫兹光学效应作为拓扑材料中贝里相的探针

基本信息

  • 批准号:
    1905519
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Non-Technical Abstract:Most of what we know about materials comes from their response to perturbations at their favorite (natural) frequencies. For instance, the pitch of sound from a plucked violin string depends on its length, the tension in it, and its thickness. In a similar way, the behavior of atoms in materials depends on the natural frequency, which, for many solid materials, fall in the Terahertz spectral range, a very difficult range to access technically until recently. This project takes advantage of recent dramatic technical advances in Terahertz frequencies to probe new materials called topological materials. These materials have been predicted to possess properties that make them useful for developing electronic devices for quantum information technology. This project also includes a broad initiative in education and outreach. The work is of particular educational value in training students with unique skills to prepare them as the work force in high tech industries. The research team will play active roles in the Johns Hopkins Physics Fair- an outreach activity which brings hundreds of people each year through Hopkins' labs during a Saturday event and exposes them to various physics demonstrations and activities. The team will also give demonstration shows at the Physics Fair and work with under-resourced local schools.Technical Abstract:This is a project to investigate a number of topological and other material systems that have important Berry phase effects using nonlinear optical response. Topological states of matter have been of central interest in condensed matter physics in recent years, yet we are lacking unique measures of many of these systems' electrodynamic properties. Theory has indicated that the nonlinear response of these compounds can give unique insight into the essential Berry phase structure of their underlying wavefunctions. Measurements will emphasize the extended THz range (here 0.1 - 40 THz [0.4 - 165 meV]) where generally responses target the low energy emergent degrees of freedom, but experiments will use a full complement of photon energies up through the near infrared. Experiments will be performed on both topological materials and trivial materials with important Berry phase effects. Materials include topological insulators, Weyl semimetals, Dirac semimetals, and 2D transition metal dichalcogenides. We will explore the nonlinear response of these system to both linear and circularized polarized radiation in a number of specific configurations that are designed to elucidate their Berry phase structure (Berry curvature and Berry connection) in these compounds. Many theoretical predictions exist, but experimentally, this is an almost completely unexplored area, which aside from its intrinsic importance has the potential to give major new insight into what might have been considered a mature area -- the nonlinear response of solids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:我们对材料的大部分了解来自于它们对最喜欢的(自然)频率扰动的反应。例如,一根小提琴弦的音高取决于它的长度、张力和厚度。以类似的方式,材料中原子的行为取决于自然频率,对于许多固体材料来说,自然频率落在太赫兹光谱范围内,这是一个直到最近才在技术上很难进入的范围。该项目利用最近在太赫兹频率方面的巨大技术进步来探测称为拓扑材料的新材料。据预测,这些材料具有使其可用于开发量子信息技术电子设备的特性。该项目还包括一项广泛的教育和外联举措。这项工作是特别的教育价值,在培养学生的独特技能,准备他们作为高科技产业的劳动力。该研究小组将在约翰霍普金斯物理博览会上发挥积极作用-这是一项外联活动,每年在周六的活动中通过霍普金斯的实验室吸引数百人,并使他们接触各种物理演示和活动。该团队还将在物理博览会上进行演示,并与资源不足的当地学校合作。技术摘要:这是一个利用非线性光学响应研究一些具有重要Berry相位效应的拓扑和其他材料系统的项目。近年来,物质的拓扑状态一直是凝聚态物理学的核心兴趣,但我们缺乏对许多这些系统的电动力学性质的独特测量。理论已经表明,这些化合物的非线性响应可以提供独特的洞察其基本波函数的基本Berry相结构。测量将强调扩展的THz范围(这里为0.1 - 40 THz [0.4 - 165 meV]),其中响应通常针对低能量出射自由度,但实验将使用近红外光子能量的全部补充。实验将在拓扑材料和具有重要Berry相位效应的平凡材料上进行。材料包括拓扑绝缘体、Weyl半金属、Dirac半金属和2D过渡金属二硫属化物。我们将探讨这些系统的线性和圆偏振辐射的非线性响应,在一些特定的配置,旨在阐明他们的Berry相结构(Berry曲率和Berry连接)在这些化合物。许多理论预测存在,但实验上,这是一个几乎完全未探索的领域,除了其内在的重要性,有可能给重大的新的洞察力,什么可能被认为是一个成熟的领域-固体的非线性响应。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution of the cyclotron mass with doping in La2−xSrxCuO4
La2·xSrxCuO4 掺杂后回旋加速器质量的​​演变
  • DOI:
    10.1103/physrevb.106.195110
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Legros, A.;Post, K. W.;Chauhan, Prashant;Rickel, D. G.;He, Xi;Xu, Xiaotao;Shi, Xiaoyan;Božović, Ivan;Crooker, S. A.;Armitage, N. P.
  • 通讯作者:
    Armitage, N. P.
Anomalously small superconducting gap in a strong spin-orbit coupled superconductor: β -tungsten
强自旋轨道耦合超导体中异常小的超导能隙:β-钨
  • DOI:
    10.1103/physrevb.105.l060503
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chauhan, Prashant;Budhani, Ramesh;Armitage, N. P.
  • 通讯作者:
    Armitage, N. P.
The 2022 magneto-optics roadmap
  • DOI:
    10.1088/1361-6463/ac8da0
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Kimel;A. Zvezdin;Sangeeta Sharma;S. Shallcross;Nuno Alves de Sousa;A. García-Martín;G. Salvan
  • 通讯作者:
    A. Kimel;A. Zvezdin;Sangeeta Sharma;S. Shallcross;Nuno Alves de Sousa;A. García-Martín;G. Salvan
Efficient Terahertz Harmonic Generation with Coherent Acceleration of Electrons in the Dirac Semimetal Cd3As2
  • DOI:
    10.1103/physrevlett.124.117402
  • 发表时间:
    2020-03-19
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Cheng, Bing;Kanda, Natsuki;Matsunaga, Ryusuke
  • 通讯作者:
    Matsunaga, Ryusuke
BCS d -wave behavior in the terahertz electrodynamic response of electron-doped cuprate superconductors
电子掺杂铜酸盐超导体太赫兹电动响应中的 BCS d 波行为
  • DOI:
    10.1103/physrevb.104.064501
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tagay, Zhenisbek;Mahmood, Fahad;Legros, Anaelle;Sarkar, Tarapada;Greene, Richard L.;Armitage, N. P.
  • 通讯作者:
    Armitage, N. P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Norman Armitage其他文献

Norman Armitage的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Norman Armitage', 18)}}的其他基金

Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
  • 批准号:
    2226666
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
WORKSHOP: The Future of the Correlated Electron Problem Workshop
研讨会:相关电子问题研讨会的未来
  • 批准号:
    2002329
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Magnetic Property Measurement System
MRI:磁性能测量系统的采集
  • 批准号:
    1828490
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Low energy electrodynamics of strongly interacting disordered systems: quantum phase transitions and many-body localization
强相互作用无序系统的低能电动力学:量子相变和多体局域化
  • 批准号:
    1508645
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Correlated Electron Systems: Textures, Topology, and Strong Interactions, June 22-27, 2014
相关电子系统:纹理、拓扑和强相互作用,2014 年 6 月 22-27 日
  • 批准号:
    1444637
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Broadband Microwave and THz Investigations of Correlated Electron and Nanostructure Systems
职业:相关电子和纳米结构系统的宽带微波和太赫兹研究
  • 批准号:
    0847652
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
International Research Fellowship Program: Infrared and Optical Studies of Quantum Phase Transitions
国际研究奖学金计划:量子相变的红外和光学研究
  • 批准号:
    0402699
  • 财政年份:
    2004
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship Award

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
  • 批准号:
    11071230
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
枢纽港选址及相关问题的算法设计
  • 批准号:
    71001062
  • 批准年份:
    2010
  • 资助金额:
    17.6 万元
  • 项目类别:
    青年科学基金项目
统计过程控制图的设计理论及其应用
  • 批准号:
    10771107
  • 批准年份:
    2007
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
MIMO电磁探测技术与成像方法研究
  • 批准号:
    40774055
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Regulation of Linear Ubiquitin Signaling in Innate Immunity
先天免疫中线性泛素信号传导的调节
  • 批准号:
    MR/X036944/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
  • 批准号:
    2327484
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Anti-Complement Immunotherapy for Pancreatic Cancer
胰腺癌的抗补体免疫治疗
  • 批准号:
    10751872
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了