Engineering Cytoskeletal Active Materials
工程细胞骨架活性材料
基本信息
- 批准号:1905675
- 负责人:
- 金额:$ 48.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract Living organisms spontaneously execute complex shape changes and motions. These properties are enabled by the unique materials within biological organisms. Many of the biological molecules, some of which have the capability to act as molecular motors to convert chemical energy into mechanical work. When these motors work in concert, they build fluids and solids with internal forces that spontaneously flow and change shape. In this proposal, the investigators will use molecular engineering to create synthetic molecular motors not found in nature with the goal to discover new types of behaviors and control over active materials. This work will enable new classes of materials that can recapitulate behaviors of living cells, including directed motion and division.Technical AbstractThe scientific goal of this proposal is to engineer active soft materials whose structure, mechanics and transport properties can be controlled by tuning the activity of constituents. Active materials constitute a broad class of systems that contain distributed stress-generating elements which underlie their spontaneous motion, pattern formation and shape changes. Within living cells, ensembles of mechanochemically active proteins support morphogenic processes at cellular and tissue scales with precise spatiotemporal control. A common structural motif of cytoskeletal materials are collections of biopolymers and molecular motors (e.g. actin filaments with myosin motors and microtubules with kinesin motors). The proposed work will exploit recent advances in molecular motor engineering to construct active materials with controllable sources of active stress that can be spatiotemporally modified. This will enable understanding of how molecular-scale properties of mechanoenzymes regulate the emergent biophysical and material behaviors of the resultant contractile gels and extensile fluids. The work proposed here will develop versatile new experimental platforms to engineer and study spatially structured active materials. Applications of this work is envisioned to construct new classes of autonomous and force-sensitive materials. Moreover, these studies will shed light on the materials design principles properties that underlie cell motility, division and shape. The broader impacts of this work will create new knowledge at the interface between materials science, synthetic biology and cell biology, train an interdisciplinary work force and improve diversity in the STEM workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术抽象的生物体自发地执行复杂的形状变化和运动。这些特性是由生物有机体中独特的材料实现的。许多生物分子,其中一些有能力充当分子马达,将化学能转化为机械功。当这些马达协调工作时,它们会产生内力作用下的流体和固体,这些内力会自发流动并改变形状。在这项提案中,研究人员将利用分子工程来创造自然界中没有的合成分子马达,目的是发现新类型的行为并控制活性材料。这项工作将使新类型的材料能够概括活细胞的行为,包括定向运动和分裂。技术摘要这项提议的科学目标是设计出具有活性的软材料,其结构、力学和传输特性可以通过调节成分的活性来控制。活性材料构成了一大类系统,其中包含分布的应力产生元件,这些元件构成了它们的自发运动、图案形成和形状变化的基础。在活细胞内,机械力化学活性蛋白质的集合通过精确的时空控制支持细胞和组织规模的形态发生过程。细胞骨架材料的一个常见结构基元是生物聚合物和分子马达的集合(例如,带有肌球蛋白马达的肌动蛋白细丝和带有动蛋白马达的微管)。这项拟议的工作将利用分子马达工程的最新进展来构建具有可控的活动应力源的活性材料,这些材料可以在时空上进行修改。这将使我们能够理解机械酶的分子尺度特性如何调节所产生的收缩凝胶和拉伸流体的出现的生物物理和材料行为。本文提出的工作将开发多功能的新的实验平台来设计和研究空间结构的活性材料。这项工作的应用有望构建新的自主和力敏感材料类别。此外,这些研究将阐明细胞运动、分裂和形状背后的材料设计原理和特性。这项工作的更广泛影响将在材料科学、合成生物学和细胞生物学之间创造新的知识,培训一支跨学科的劳动力队伍,并提高STEM劳动力的多样性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning shape and internal structure of protein droplets via biopolymer filaments
通过生物聚合物丝调整蛋白质液滴的形状和内部结构
- DOI:10.1039/c9sm02462j
- 发表时间:2020
- 期刊:
- 影响因子:3.4
- 作者:Scheff, Danielle R.;Weirich, Kimberly L.;Dasbiswas, Kinjal;Patel, Avinash;Vaikuntanathan, Suriyanarayanan;Gardel, Margaret L.
- 通讯作者:Gardel, Margaret L.
Actin bundle architecture and mechanics regulate myosin II force generation
- DOI:10.1016/j.bpj.2021.03.026
- 发表时间:2021-05-18
- 期刊:
- 影响因子:3.4
- 作者:Weirich, Kimberly L.;Stam, Samantha;Gardel, Margaret L.
- 通讯作者:Gardel, Margaret L.
Catapulting of topological defects through elasticity bands in active nematics
通过活性向列弹性带弹射拓扑缺陷
- DOI:10.1039/d2sm00414c
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Kumar, Nitin;Zhang, Rui;Redford, Steven A.;de Pablo, Juan J.;Gardel, Margaret L.
- 通讯作者:Gardel, Margaret L.
Machine learning active-nematic hydrodynamics
- DOI:10.1073/pnas.2016708118
- 发表时间:2021-03-09
- 期刊:
- 影响因子:11.1
- 作者:Colen, Jonathan;Han, Ming;Vitelli, Vincenzo
- 通讯作者:Vitelli, Vincenzo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret Gardel其他文献
Force Transmission in the Actin Cytoskeleton
- DOI:
10.1016/j.bpj.2011.11.2222 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Margaret Gardel - 通讯作者:
Margaret Gardel
Quantitative Investigation of Individual Contractile Actin Bundles <em>in vitro</em>
- DOI:
10.1016/j.bpj.2009.12.3016 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Todd Thoresen;Margaret Gardel - 通讯作者:
Margaret Gardel
Myosin Isoform-Specificity of Contractile Elements Formed in Reconstituted Actomyosin Bundles
- DOI:
10.1016/j.bpj.2011.11.2049 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Todd Thoresen;Margaret Gardel - 通讯作者:
Margaret Gardel
Force Transmission in a Reconstituted Actomyosin Cortex
- DOI:
10.1016/j.bpj.2011.11.1313 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Michael P. Murrell;Cecile Sykes;Margaret Gardel - 通讯作者:
Margaret Gardel
Mechanochemical Circuits in the Cytoplasm
- DOI:
10.1016/j.bpj.2019.11.267 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Margaret Gardel - 通讯作者:
Margaret Gardel
Margaret Gardel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margaret Gardel', 18)}}的其他基金
Physics Frontier Center for Living Systems
生命系统物理前沿中心
- 批准号:
2317138 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Cooperative Agreement
Active Adaptive Materials Design Inspired by Cell Mechanics
受细胞力学启发的主动自适应材料设计
- 批准号:
2215605 - 财政年份:2022
- 资助金额:
$ 48.05万 - 项目类别:
Standard Grant
Conference: Soft Materials, Polymers, and Biomaterials Workshop
会议:软材料、聚合物和生物材料研讨会
- 批准号:
2234796 - 财政年份:2022
- 资助金额:
$ 48.05万 - 项目类别:
Standard Grant
Materials Research Science and Engineering Centers
材料研究科学与工程中心
- 批准号:
1420709 - 财政年份:2014
- 资助金额:
$ 48.05万 - 项目类别:
Cooperative Agreement
相似海外基金
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Cytoskeletal Control of Yap in Heart Regeneration
Yap 在心脏再生中的细胞骨架控制
- 批准号:
10718408 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Novel mechanisms involved in rearrangement of cytoskeletal cytoskeletons by dynamin supercomplex
动力超复合物参与细胞骨架重排的新机制
- 批准号:
23H02477 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on cytoskeletal protein-protein interaction induced by antitumor natural products
抗肿瘤天然产物诱导的细胞骨架蛋白-蛋白相互作用的研究
- 批准号:
23H02090 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
BRITE Relaunch: Using Cell Shape and Cytoskeletal Organization for Understanding and Predicting Cellular Force Generation
BRITE 重新推出:利用细胞形状和细胞骨架组织来理解和预测细胞力的产生
- 批准号:
2227605 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Standard Grant
Collaborative Research: Tools 4 Cells: Developing Next Generation Methods for Studying Cytoskeletal Factors in the Cell Nucleus
合作研究:工具 4 细胞:开发研究细胞核中细胞骨架因子的下一代方法
- 批准号:
2306188 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Standard Grant
Viscoelastic Cytoskeletal-Membrane Mechanics: Hybrid Discrete-Continuum Stochastic Approaches
粘弹性细胞骨架膜力学:混合离散连续随机方法
- 批准号:
2306345 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Standard Grant
Cytoskeletal regulation of vasopressin neuron activity in health and salt-dependent hypertension.
健康和盐依赖性高血压中加压素神经元活性的细胞骨架调节。
- 批准号:
488818 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Operating Grants
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别:
Tubulin modifications and cytoskeletal alterations in aging
衰老过程中的微管蛋白修饰和细胞骨架变化
- 批准号:
10590128 - 财政年份:2023
- 资助金额:
$ 48.05万 - 项目类别: