Collaborative Research: NSF-BSF: Understanding Semiconducting Polymers in High-Dielectric-Constant Environments
合作研究:NSF-BSF:了解高介电常数环境中的半导体聚合物
基本信息
- 批准号:1905770
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:Research into 'plastic' semiconductors has led to materials that can harvest the energy of the sun and convert it into electricity. Yet, current devices made with such semiconducting plastics are complex and require two materials to efficiently convert light into electricity. The current project explores whether eventually this structure could be simplified, possibly yielding devices based on a single material. For this, the effect of the local environment on the electronic and optical properties of the plastic semiconductor will be systematically investigated using model systems to test theories that predict that more efficient devices could be produced by making the local environment of the plastic semiconductor more polar. The fundamental insight achieved in this project will allow to design and produce new plastic semiconductors, improve the efficiency and potentially the stability of plastic-based solar cells, and will likely simplify their production so that they eventually could be printed similar to the way newspapers are printed. These all are factors that would improve the economic viability of plastic semiconductors in a range of applications and, in turn, would contribute to reduced greenhouse gas emission and facilitate implementation of concepts such as zero-energy housing and low-water-intensity farming based on solar cell integrations into greenhouses.TECHNICAL SUMMARY:The planned work aims to significantly advance our fundamental understanding of how high-k environments affect the optoelectronic properties of polymer semiconductors. While the effective dielectric constant, k, of functional polymers can be manipulated via chemical design or the surrounding of the polymer, changes in molecular structure to create a high-k polymers also affect other features, including polarity, molecular packing, phase behavior, and electronic properties. As a consequence, few direct structure/function relations have been experimentally established to date. In this project, various current complications that have hindered the delivery of structure/function interrelations will be circumvented via i) separating the polymer self-assembly during processing from the introduction of the high-k material as much as possible, to allow for a clean before/after comparisons, and ii) pursuing new self-assembly strategies to create molecular hybrid materials and blends. These approaches allow to tune the lengthscales and specific interfacial areas of the self-assembly and, in turn, provide means to disentangle sought-after optoelectronic effects from other factors that might impact optoelectronic properties/materials performance. The knowledge gained during the project will be applied to polymer solar cells, which generally rely on donor:acceptor bulk heterojunctions to achieve efficient exciton splitting. A main goal of the project is to delineate if there is ever a pathway to significantly lower the exciton binding energy (and thus realize efficient exciton splitting in organic solar cells) by modifying k in the vicinity of relevant semiconducting polymer backbones or if one really needs to modify the backbone itself.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:对“塑料”半导体的研究导致材料可以收获太阳的能量并将其转化为电力。然而,使用这种半导体塑料制成的当前设备很复杂,需要两种材料才能有效地将光转换为电能。当前的项目探讨了最终是否可以简化此结构,可能会基于单个材料产生设备。为此,将使用模型系统系统地研究局部环境对塑料半导体的电子和光学特性的影响,以测试可以通过使塑料半导体的局部环境更加极性产生更有效的设备。该项目中实现的基本见解将允许设计和生产新的塑料半导体,提高效率和潜在的基于塑料的太阳能电池的稳定性,并可能简化其生产,以便最终可以打印它们类似于打印报纸的方式。这些都是将塑料半导体在一系列应用中提高经济可行性的因素,进而将有助于减少温室气体排放量,并促进诸如零能量住房和基于低饮食强度耕作和基于太阳能细胞整合的概念的概念,从而明显地将环境介绍到绿色群体中。聚合物半导体的光电特性。尽管可以通过化学设计或聚合物周围操纵功能聚合物的有效介电常数K,但分子结构的变化以创建高K聚合物也会影响其他特征,包括极性,分子堆积,相位行为和电子特性。结果,迄今为止,很少有直接的结构/功能关系已在实验中建立。在这个项目中,将通过i)通过i)将聚合物自组装分离到加工期间的聚合物自组装中,从而尽可能多地引入高电平材料,以便在比较前/之后进行清洁,并且ii ii)追求新的自组件策略,以创建分子杂化材料和融合体。这些方法可以调整自组装的长度尺度和特定的界面区域,进而提供了与其他可能影响光电特性/材料性能的其他因素相关的寻求的光电效应的手段。项目期间获得的知识将应用于通常依赖供体的聚合物太阳能电池:受体散装异质界来实现有效的激子分裂。该项目的一个主要目标是描述是否有明显降低激子结合能的途径(从而实现有效的激子在有机太阳能电池中的有效激子分裂),通过在相关半导体的相关聚合物附近进行修改k,通过对backbone的本身进行修改,以反映nsf的宣传,并反映出该奖项,并反映了nsf的奖励,并反映了该奖项,并且已经反映了DEREM的奖励。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harald Ade其他文献
High‐Performance All‐Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy
高性能全聚合物太阳能电池:通过随机三元共聚策略合成聚合物受体
- DOI:
10.1002/ange.202005357 - 发表时间:
2020-05 - 期刊:
- 影响因子:0
- 作者:
Jiaqi Du;Ke Hu;Lei Meng;Indunil Angunawela;Jinyuan Zhang;Shucheng Qin;Alex Liebman‐Pelaez;Chenhui Zhu;Zhanjun Zhang;Harald Ade;Yongfang Li - 通讯作者:
Yongfang Li
Synthesis and Photovoltaic Properties of a Series of Narrow Bandgap Organic Semiconductor Acceptors with Absorption Edge Reaching 900 nm
一系列吸收边达到900 nm的窄带隙有机半导体受体的合成及光伏性能
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiaojun Li;He Huang;Haijun Bin;Zhengxing Peng;Chenhui Zhu;Lingwei Xue;Zhi-Guo Zhang;Zhanjun Zhang;Harald Ade;Yongfang Li - 通讯作者:
Yongfang Li
High voltage all polymer solar cells with a polymer acceptor based on NDI and benzotriazole
具有基于 NDI 和苯并三唑的聚合物受体的高压全聚合物太阳能电池
- DOI:
10.1039/c9tc01922g - 发表时间:
2019-07 - 期刊:
- 影响因子:6.4
- 作者:
Qing Ma;Xiaonan Xue;Lian Zhong;Indunil Angunawela;Shanshan Chen;Harald Ade;Lijun Huo;Zhi-Guo Zhang;Yongfang Li - 通讯作者:
Yongfang Li
Surface sensitivity in scanning transmission x-ray microspectroscopy using secondary electron detection.
使用二次电子检测的扫描透射 X 射线显微光谱的表面灵敏度。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.6
- 作者:
C. Hub;S. Wenzel;Jörg Raabe;Harald Ade;Rainer H. Fink - 通讯作者:
Rainer H. Fink
Isomery-Dependent Miscibility Enables High-Performance All-Small-Molecule Solar Cells
异构依赖的混溶性使高性能全小分子太阳能电池成为可能
- DOI:
10.1002/smll.201804271 - 发表时间:
2018 - 期刊:
- 影响因子:13.3
- 作者:
Hao Wu;Haijun Fan;Shengjie Xu;Long Ye;Yuan Guo;Yuanping Yi;Harald Ade;Xiaozhang Zhu - 通讯作者:
Xiaozhang Zhu
Harald Ade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harald Ade', 18)}}的其他基金
Collaborative Research: Sustainable Ambient Printed High Efficiency Organic PhotoVoltaics (SAPHE-OPV)
合作研究:可持续环境印刷高效有机光伏(SAPHE-OPV)
- 批准号:
1934351 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Charge Transport Pathways in Semiconducting Polymer Films
合作研究:半导体聚合物薄膜中的电荷传输路径
- 批准号:
1207032 - 财政年份:2012
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Collaborative Research: Characterization of the Microstructure and Charge Transport at Interfaces of Semiconducting Polymers
合作研究:半导体聚合物微观结构和界面电荷传输的表征
- 批准号:
0906457 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Viscous Fluid Dynamics and Characterization of Nano-Structured Polymers
纳米结构聚合物的粘性流体动力学和表征
- 批准号:
0071743 - 财政年份:2000
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Acquisition of Hardware for a Scanning Transmission X-ray Microscope Dedicated to Synthetic and Natural Polymer Research and Education
采购专用于合成和天然聚合物研究和教育的扫描透射 X 射线显微镜硬件
- 批准号:
9975694 - 财政年份:1999
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
- 批准号:82201590
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
- 批准号:82071300
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
circ100783作为miR-34b分子海绵在铅暴露海马SNARE 复合体形成和突触囊泡释放中的机制研究
- 批准号:81872577
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
- 批准号:31671397
- 批准年份:2016
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant