Collaborative Research: NSF-BSF: Understanding Semiconducting Polymers in High-Dielectric-Constant Environments

合作研究:NSF-BSF:了解高介电常数环境中的半导体聚合物

基本信息

  • 批准号:
    1905901
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY:Research into 'plastic' semiconductors has led to materials that can harvest the energy of the sun and convert it into electricity. Yet, current devices made with such semiconducting plastics are complex and require two materials to efficiently convert light into electricity. The current project explores whether eventually this structure could be simplified, possibly yielding devices based on a single material. For this, the effect of the local environment on the electronic and optical properties of the plastic semiconductor will be systematically investigated using model systems to test theories that predict that more efficient devices could be produced by making the local environment of the plastic semiconductor more polar. The fundamental insight achieved in this project will allow to design and produce new plastic semiconductors, improve the efficiency and potentially the stability of plastic-based solar cells, and will likely simplify their production so that they eventually could be printed similar to the way newspapers are printed. These all are factors that would improve the economic viability of plastic semiconductors in a range of applications and, in turn, would contribute to reduced greenhouse gas emission and facilitate implementation of concepts such as zero-energy housing and low-water-intensity farming based on solar cell integrations into greenhouses.TECHNICAL SUMMARY:The planned work aims to significantly advance our fundamental understanding of how high-k environments affect the optoelectronic properties of polymer semiconductors. While the effective dielectric constant, k, of functional polymers can be manipulated via chemical design or the surrounding of the polymer, changes in molecular structure to create a high-k polymers also affect other features, including polarity, molecular packing, phase behavior, and electronic properties. As a consequence, few direct structure/function relations have been experimentally established to date. In this project, various current complications that have hindered the delivery of structure/function interrelations will be circumvented via i) separating the polymer self-assembly during processing from the introduction of the high-k material as much as possible, to allow for a clean before/after comparisons, and ii) pursuing new self-assembly strategies to create molecular hybrid materials and blends. These approaches allow to tune the lengthscales and specific interfacial areas of the self-assembly and, in turn, provide means to disentangle sought-after optoelectronic effects from other factors that might impact optoelectronic properties/materials performance. The knowledge gained during the project will be applied to polymer solar cells, which generally rely on donor:acceptor bulk heterojunctions to achieve efficient exciton splitting. A main goal of the project is to delineate if there is ever a pathway to significantly lower the exciton binding energy (and thus realize efficient exciton splitting in organic solar cells) by modifying k in the vicinity of relevant semiconducting polymer backbones or if one really needs to modify the backbone itself.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:对“塑料”半导体的研究已经导致了可以收集太阳能并将其转化为电能的材料。然而,目前用这种半导体塑料制成的设备很复杂,需要两种材料才能有效地将光转化为电。目前的项目探讨最终是否可以简化这种结构,可能产生基于单一材料的设备。为此,将使用模型系统系统地研究局部环境对塑料半导体的电子和光学性质的影响,以测试预测通过使塑料半导体的局部环境更具极性可以生产更高效器件的理论。该项目所获得的基本见解将允许设计和生产新的塑料半导体,提高塑料太阳能电池的效率和潜在的稳定性,并可能简化其生产,使其最终能够以类似于报纸印刷的方式印刷。这些都是提高塑料半导体在一系列应用中的经济可行性的因素,反过来,将有助于减少温室气体排放,并促进零能耗住房和基于太阳能电池集成到温室中的低水强度农业等概念的实施。技术概要:计划中的工作旨在大大推进我们对高k环境如何影响聚合物半导体光电性能的基本理解。虽然功能聚合物的有效介电常数k可以通过化学设计或聚合物的周围环境来控制,但分子结构的变化也会影响其他特征,包括极性,分子堆积,相行为和电子特性。因此,很少有直接的结构/功能关系已被实验建立至今。在这个项目中,目前阻碍结构/功能相互关系的各种复杂性将通过以下方式来规避:i)尽可能多地将加工过程中的聚合物自组装与高k材料的引入分离,以允许进行清洁的前后比较,以及ii)追求新的自组装策略以创建分子杂化材料和共混物。这些方法允许调整自组装的长度尺度和特定的界面面积,并且反过来提供了将所追求的光电效应与可能影响光电特性/材料性能的其他因素分开的手段。在项目期间获得的知识将应用于聚合物太阳能电池,其通常依赖于供体:受体体异质结来实现有效的激子分裂。该项目的一个主要目标是确定是否有一种途径可以显着降低激子结合能(从而在有机太阳能电池中实现有效的激子分裂)通过修改相关半导体聚合物主链附近的k,或者如果确实需要修改主链本身。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward Fast Screening of Organic Solar Cell Blends
  • DOI:
    10.1002/advs.202000960
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Artem Levitsky;G. Matrone;Aditi Khirbat;I. Bargigia;Xiaolei Chu;Oded Nahor;T. Segal‐Peretz;A. Moulé;L. Richter;Carlos Silva;N. Stingelin;G. Frey
  • 通讯作者:
    Artem Levitsky;G. Matrone;Aditi Khirbat;I. Bargigia;Xiaolei Chu;Oded Nahor;T. Segal‐Peretz;A. Moulé;L. Richter;Carlos Silva;N. Stingelin;G. Frey
Coexisting Glassy Phases with Different Compositions in NFA-Based Bulk Heterojunctions
  • DOI:
    10.1021/acsmaterialslett.2c00625
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Oded Nahor;Aditi Khirbat;S. Schneider;M. Toney;N. Stingelin;G. Frey
  • 通讯作者:
    Oded Nahor;Aditi Khirbat;S. Schneider;M. Toney;N. Stingelin;G. Frey
Balancing crop production and energy harvesting in organic solar-powered greenhouses
  • DOI:
    10.1016/j.xcrp.2021.100381
  • 发表时间:
    2021-03-24
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Ravishankar, Eshwar;Charles, Melodi;O'Connor, Brendan T.
  • 通讯作者:
    O'Connor, Brendan T.
Mission immiscible: overcoming the miscibility limit of semiconducting:ferroelectric polymer blends via vitrification
不混溶的任务:通过玻璃化克服半导体:铁电聚合物共混物的混溶性极限
  • DOI:
    10.1039/d3tc00071k
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Khirbat, Aditi;Nahor, Oded;Kantrow, Henry;Bakare, Oladipo;Levitsky, Artem;Frey, Gitti L.;Stingelin, Natalie
  • 通讯作者:
    Stingelin, Natalie
Providing a Window into the Phase Behavior of Semiconducting Polymers
  • DOI:
    10.1021/acs.macromol.1c00296
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Botiz, Ioan;Durbin, Marlow M.;Stingelin, Natalie
  • 通讯作者:
    Stingelin, Natalie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natalie Stingelin其他文献

Solution-processing of semiconducting organic small molecules: what we have learnt from 5,11-bis(triethylsilylethynyl)anthradithiophene
半导体有机小分子的溶液加工:我们从 5,11-双(三乙基甲硅烷基乙炔基)蒽并噻吩中学到的知识
  • DOI:
    10.1039/d1tc01418h
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Liyang Yu;Guiseppe Portale;Natalie Stingelin
  • 通讯作者:
    Natalie Stingelin
Role of Side-Chain Free Volume on the Electrochemical Behavior of Poly(propylenedioxythiophenes)
侧链自由体积对聚丙二氧噻吩电化学行为的影响
  • DOI:
    10.1021/acs.chemmater.3c02122
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Marlow M. Durbin;Alex H. Balzer;John R. Reynolds;E. Ratcliff;Natalie Stingelin;Anna M. Österholm
  • 通讯作者:
    Anna M. Österholm
A materials physics perspective on structure–processing–function relations in blends of organic semiconductors
从材料物理角度探讨有机半导体混合物中结构-加工-功能关系
  • DOI:
    10.1038/s41578-023-00541-5
  • 发表时间:
    2023-03-02
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Zhengxing Peng;Natalie Stingelin;Harald Ade;Jasper J. Michels
  • 通讯作者:
    Jasper J. Michels
Terra incognita unravelled
未知的土地被揭开面纱
  • DOI:
    10.1038/s41563-024-02047-z
  • 发表时间:
    2024-11-13
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Erin Ratcliff;Natalie Stingelin
  • 通讯作者:
    Natalie Stingelin

Natalie Stingelin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natalie Stingelin', 18)}}的其他基金

Collaborative Research: DMREF: Establishing a molecular interaction framework to design and predict modern polymer semiconductor assembly
合作研究:DMREF:建立分子相互作用框架来设计和预测现代聚合物半导体组装
  • 批准号:
    2324190
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Side-Chain Driven Assembly of Polymer Semiconductors
聚合物半导体的侧链驱动组装
  • 批准号:
    2108123
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Interplay of Molecular Structure and Solution Behavior in High Performance Conjugated Polymers
高性能共轭聚合物中分子结构和溶液行为的相互作用
  • 批准号:
    1809495
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
DMREF: Metallic-type transport in polymers: Establishing materials design criteria and predicting structure/property interrelations
DMREF:聚合物中的金属型传输:建立材料设计标准并预测结构/性能相互关系
  • 批准号:
    1729737
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Self-organized nanostructures and transparent conducting electrodes for low cost scaleable organic photovoltaic devices
用于低成本可扩展有机光伏器件的自组织纳米结构和透明导电电极
  • 批准号:
    EP/F056648/2
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
DECAF - Delivering Electronic Circuitry with Aligned layers by Foil stamping
DECAF - 通过箔冲压提供具有对齐层的电子电路
  • 批准号:
    DT/F006144/2
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Self-organized nanostructures and transparent conducting electrodes for low cost scaleable organic photovoltaic devices
用于低成本可扩展有机光伏器件的自组织纳米结构和透明导电电极
  • 批准号:
    EP/F056648/1
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
DECAF - Delivering Electronic Circuitry with Aligned layers by Foil stamping
DECAF - 通过箔冲压提供具有对齐层的电子电路
  • 批准号:
    DT/F006144/1
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了