Cellulose Nanomaterials Enabled Manufacturing of Multi-Scale Porous Structured Ceramics

纤维素纳米材料可制造多尺度多孔结构陶瓷

基本信息

项目摘要

This grant establishes the scientific and engineering foundation for a new manufacturing platform for multi-scale nanostructured porous ceramics using cellulose nanomaterials. These ceramics are used in next generation components for a wide range of applications, including, electronic devices, bioimplants, catalysts, aerospace and energy harvesting, which greatly impacts U.S. economy and prosperity. Cellulose nanomaterials are fibers much smaller than human hair and are available from trees and cotton as a clean material source. Currently, the fabrication of multi-scale nanostructured porous ceramics entails many steps, often not compatible with large-scale manufacturing, using chemicals that are only valid for certain compositions. This research creates new multidisciplinary knowledge in the areas of materials science, surface chemistry and materials processing to manufacture porous structured ceramics in a more simple, efficient and cost-effective manner by reducing processing steps and additives. The versatility of this approach makes this a manufacturing platform capable of generating a range of advanced materials using natural resources and plant waste, such as, grain husks. This opens possibilities for access to higher education in materials and manufacturing and training of the next generation of more diverse and inclusive scientists ready for the work force. The simplicity of the approach can potentially lower manufacturing cost for these types of materials, resulting in cheaper and better computers, solar panels and bone implants. Cellulose nanomaterial morphology and surface chemistry makes it an excellent candidate to be used for the synthesis, processing and shaping of a wide range of ceramic materials and structures. This project explores the self-assembly, kinetics and structural formation mechanisms through which cellulose nanomaterials can enable simplified processing and production of multi-scale meso-structured porous ceramics. The project explores the potential use of cellulose nanomaterials as surface and templating agents and as a shaping aid in ceramic processing. The research focuses on developing an understanding of the interaction between ceramics and cellulose nanoparticles, specifically, the chemical and structural control of these mixtures, and using this understanding to process the porous ceramics. The experiments are driven by computational imaging as well as models that correlate microstructure with the self- assembly of cellulose nanomaterials with ceramic particles into different structures by chemical and physical mechanisms. The key feature of this approach relies on the ease of processing (chemistry compatibility, ease of mixture, simple templating) provided by this platform versus the current state-of-the-art to create mesostructured materials. The potential application of this research is to make significant impacts in facile/simplified processes and approaches to design mesostructured ceramics at the 'bulk' level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项资助为使用纤维素纳米材料的多尺度纳米结构多孔陶瓷的新制造平台建立了科学和工程基础。这些陶瓷被广泛应用于下一代组件,包括电子设备、生物植入物、催化剂、航空航天和能源收集,极大地影响了美国的经济和繁荣。纤维素纳米材料是比人类头发小得多的纤维,可以从树木和棉花中获得,作为清洁的材料来源。 目前,多尺度纳米结构多孔陶瓷的制造需要许多步骤,通常与大规模制造不兼容,使用仅对某些组合物有效的化学品。这项研究在材料科学,表面化学和材料加工领域创造了新的多学科知识,通过减少加工步骤和添加剂,以更简单,高效和具有成本效益的方式制造多孔结构陶瓷。这种方法的多功能性使其成为一个制造平台,能够利用自然资源和植物废料(如谷壳)生产一系列先进材料。这为获得材料和制造方面的高等教育以及培训下一代更加多样化和包容性的科学家提供了可能性。这种方法的简单性可能会降低这些类型材料的制造成本,从而导致更便宜,更好的计算机,太阳能电池板和骨植入物。纤维素纳米材料的形态和表面化学使其成为用于各种陶瓷材料和结构的合成、加工和成型的优秀候选材料。该项目探索了自组装,动力学和结构形成机制,通过这些机制,纤维素纳米材料可以简化多尺度介观结构多孔陶瓷的加工和生产。该项目探讨了纤维素纳米材料作为表面和模板剂以及作为陶瓷加工中的成型助剂的潜在用途。研究重点是了解陶瓷和纤维素纳米颗粒之间的相互作用,特别是这些混合物的化学和结构控制,并利用这种理解来处理多孔陶瓷。 这些实验是由计算成像以及模型驱动的,这些模型将微结构与纤维素纳米材料与陶瓷颗粒通过化学和物理机制自组装成不同结构相关联。该方法的关键特征依赖于该平台提供的易于加工(化学相容性、易于混合、简单模板化),而不是当前最先进的方法来产生介观结构材料。这项研究的潜在应用是在“散装”水平上设计介观结构陶瓷的简易/简化过程和方法中产生重大影响。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carolina Tallon其他文献

Exploring new solvent mixtures for near-net shaping of Ultra-High Temperature Ceramics via colloidal processing
  • DOI:
    10.1016/j.ceramint.2023.04.055
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Julia Goyer;Carolina Tallon
  • 通讯作者:
    Carolina Tallon
Numerical investigation of thermomechanical response of multiscale porous Ultra-High Temperature Ceramics
  • DOI:
    10.1016/j.ceramint.2022.01.006
  • 发表时间:
    2022-04-15
  • 期刊:
  • 影响因子:
  • 作者:
    Stefan J. Povolny;Gary D. Seidel;Carolina Tallon
  • 通讯作者:
    Carolina Tallon
Influence of dispersant size on rheology of non-aqueous ceramic particle suspensions
  • DOI:
    10.1016/j.apt.2011.04.011
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephen Tanurdjaja;Carolina Tallon;Peter J. Scales;George V. Franks
  • 通讯作者:
    George V. Franks

Carolina Tallon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Standard Grant
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
  • 批准号:
    24K17589
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Standard Grant
Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
  • 批准号:
    DP240102006
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Discovery Projects
Two-dimensional nanomaterials for wearable zinc ion battery
用于可穿戴锌离子电池的二维纳米材料
  • 批准号:
    DP240102177
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Discovery Projects
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Standard Grant
Targeted pathogen-specific nanomaterials for delivery and biosensor applications within plants
用于植物内递送和生物传感器应用的靶向病原体特异性纳米材料
  • 批准号:
    24K17831
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
  • 批准号:
    2340728
  • 财政年份:
    2024
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了