EAGER: DREAM-B: Collaborative Research: Moldable and Wave Tunable Materials for Complex Freeform Structures
EAGER:DREAM-B:合作研究:用于复杂自由形状结构的可模压和波可调材料
基本信息
- 批准号:1911678
- 负责人:
- 金额:$ 7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural disasters, such as hurricanes, tornados, and earthquakes, pose a continuous threat in the United States, which can result in economic losses as well as loss of life. Unpredictable weather patterns have led to more severe and frequent natural disasters and, therefore, mitigating the impact of hazards on building structures is important for continuity in national welfare and prosperity following a disaster. Aside from building structures that can sustain various extreme events, modern and future architecture has shifted towards complex freeform structures, beyond simple geometries, to achieve aesthetically pleasing structures and to make efficient use of space. A solution that simultaneously addresses all the above issues will require redefining some of the conventional paradigms in construction material design and deployment. This EArly-concept Grant for Exploratory Research (EAGER) will investigate a new construction material approach for building skins and facades that are moldable to various complex geometries and, at the same, have the ability to manipulate waves imparted to the buildings and dissipate energy from high velocity winds. The moldability will be achieved by relief cutting solid panels made of wood and metals with certain microstructural patterns, which is a low-cost process and hence suitable for the building industry. While relief cutting promotes flexible surfaces, this approach generally reduces the load carrying ability of the panels, which may not be desirable. This study will provide a means to potentially turn the disadvantage of the cutting method into an advantage, i.e., utilizing the cut patterns for tuning the dynamic properties to better resist hazard loadings. Because of the architected nature, the cut surfaces are expected to display a wide range of wave and vibration control and energy dissipation mechanisms. Equipping buildings with the ability to redirect, localize, trap, and dissipate energy, instead of merely resisting the impacted forces, can lead to a more efficient hazard mitigation strategy. This research can advance structural engineering by pushing complex freeform shapes to a standard practice that intertwines aesthetic arguments, building performance requirements, and material design considerations. To a greater impact, freeform complex shapes can provide buildings with additional functionalities beyond their default load bearing and shelter capabilities. This project will provide undergraduate and graduate students with interdisciplinary professional and research training opportunities. Project data will be archived and made publicly available in the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) Data Depot (https://www.DesignSafe-ci.org). This research aims to provide fundamental knowledge regarding the interplay between complex freeform geometries, microstructural morphologies, constituent properties (viscoelastic and inelastic deformations), and mechanisms of wave propagation and energy dissipation in architectural materials. A technique known as relief cutting (or kerfing) will be used to endow thin material sheets with prescribed curved shapes and surface patterns. The objective of such patterning is two-fold. First, it will allow molding flat plates into a nearly endless array of complex freeform shapes to fulfill a variety of functional and aesthetic architectural needs. Second, it will induce a microstructural geometry and property modulation that can help manipulate a wide range of wave and vibration events, through energy absorption and dissipation mechanisms. After a simulation-based design stage exploring the design space available via kerfing, freeform components will be fabricated, molded into shape, and tested. In the design and testing of laboratory specimens, excitations that mimic the dynamic loads of high velocity winds will be accounted for to realize stress and deformation fields similar to those observed in realistic freeform structures used in actual architectural structures. This research is high risk and high reward as it will be a significant departure from traditional construction methodologies: 1) it will lead to a paradigm shift in building design, in which freeform complex shapes will be demonstrated to offer better resistance to dynamic loadings; 2) it will introduce a new and bold modular fabrication philosophy for freeform shapes that will generate minimal material waste, eliminate the need for mold casting, and simplify the logistics of material transportation; and 3) it harmoniously will blend dynamic performance and architectural constraints - two requirements that are often perceived to be mutually exclusive - by taking advantage of the intrinsic mechanical and aesthetic attributes of complex shapes and microstructural patterns.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然灾害,如飓风、龙卷风和地震,在美国构成持续的威胁,可能导致经济损失和生命损失。不可预测的天气模式导致了更严重和频繁的自然灾害,因此,减轻灾害对建筑结构的影响对于灾后国家福利和繁荣的连续性至关重要。除了能够承受各种极端事件的建筑结构外,现代和未来的建筑已经转向复杂的自由形式结构,超越简单的几何形状,以实现美观的结构并有效利用空间。同时解决上述所有问题的解决方案需要重新定义建筑材料设计和部署中的一些传统范例。这个探索性研究的早期概念拨款(EAGER)将研究一种新的建筑材料方法,用于建筑表皮和立面,这种材料可以塑造成各种复杂的几何形状,同时具有操纵传递给建筑物的波浪和消散高速风的能量的能力。可塑性将通过浮雕切割由木材和金属制成的具有某些微结构图案的实心板来实现,这是一种低成本的工艺,因此适用于建筑行业。虽然浮雕切割促进柔性表面,但这种方法通常会降低面板的承载能力,这可能是不可取的。这项研究将提供一种潜在的方法,将切割方法的缺点转化为优势,即利用切割模式来调整动态特性,以更好地抵抗危险载荷。由于结构性质,切割表面有望显示出广泛的波动和振动控制以及能量耗散机制。为建筑物配备定向、定位、捕获和消散能量的能力,而不仅仅是抵抗冲击力,可以带来更有效的减灾策略。这项研究可以推动结构工程,将复杂的自由形状推向标准实践,将美学论证、建筑性能要求和材料设计考虑交织在一起。为了产生更大的影响,自由形状的复杂形状可以为建筑物提供额外的功能,而不仅仅是其默认的承重和遮蔽能力。该项目将为本科生和研究生提供跨学科的专业和研究培训机会。项目数据将在nsf支持的自然灾害工程研究基础设施(NHERI)数据仓库(https://www.DesignSafe-ci.org)中存档并公开提供。本研究旨在为建筑材料中复杂的自由几何形状、微观结构形态、组成特性(粘弹性和非弹性变形)以及波传播和能量耗散机制之间的相互作用提供基础知识。一种被称为浮雕切割(或切角)的技术将被用来赋予薄材料板材规定的弯曲形状和表面图案。这种模式的目的是双重的。首先,它将允许将平板塑造成几乎无穷无尽的复杂自由形状,以满足各种功能和美学建筑需求。其次,它将诱导微观结构几何和性质调制,可以通过能量吸收和耗散机制帮助操纵大范围的波和振动事件。在基于仿真的设计阶段探索了通过切缝可用的设计空间之后,自由形状的组件将被制造、成型并进行测试。在实验室样品的设计和测试中,将考虑模拟高速风动载荷的激励,以实现与实际建筑结构中使用的现实自由形式结构相似的应力场和变形场。这项研究是高风险和高回报的,因为它将与传统的建筑方法有很大的不同:1)它将导致建筑设计的范式转变,其中自由形状的复杂形状将被证明能够更好地抵抗动态载荷;2)它将为自由形状引入新的大胆的模块化制造理念,将产生最小的材料浪费,消除模具铸造的需要,并简化材料运输的物流;3)通过利用复杂形状和微观结构模式的内在机械和美学属性,它将和谐地融合动态性能和建筑约束——这两个要求通常被认为是相互排斥的。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bandgap tuning in kerfed metastrips under extreme deformation
极端变形下切口元带的带隙调谐
- DOI:10.1016/j.eml.2022.101693
- 发表时间:2022
- 期刊:
- 影响因子:4.7
- 作者:Widstrand, Caleb;Kalantar, Negar;Gonella, Stefano
- 通讯作者:Gonella, Stefano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefano Gonella其他文献
Bridging scales analysis of wave propagation in heterogeneous structures with imperfections
- DOI:
10.1016/j.wavemoti.2007.09.007 - 发表时间:
2008-03-01 - 期刊:
- 影响因子:
- 作者:
Stefano Gonella;Massimo Ruzzene - 通讯作者:
Massimo Ruzzene
Stefano Gonella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefano Gonella', 18)}}的其他基金
Metamaterial Architectures for Programmable Droplet Motion
用于可编程液滴运动的超材料架构
- 批准号:
2211890 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: Cellular Metamaterials that Localize Stress - Towards a Topological Protection against Fracture
合作研究:局部化应力的细胞超材料——实现拓扑防断裂
- 批准号:
2027000 - 财政年份:2020
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
CAREER: Adaptive Acoustic Metamaterials with Switchable Functionality: A Design Platform Enabled by Nonlinearity
职业:具有可切换功能的自适应声学超材料:非线性支持的设计平台
- 批准号:
1452488 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Wave Control via Phononic Crystals with Adaptively Relaxed Cell Symmetry
通过具有自适应松弛单元对称性的声子晶体进行波控制
- 批准号:
1266089 - 财政年份:2013
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
相似国自然基金
iNOS通过DREAM-A20通路调控心肌细胞坏死性凋亡及其在糖尿病心肌病中的作用
- 批准号:82300403
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PEDV N蛋白通过p53-DREAM信号通路介导宿主细胞S期阻滞的分子机制
- 批准号:31873011
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
TRPM7在神经细胞缺血损伤中的作用及DREAM对TRPM7调控机制研究
- 批准号:81501026
- 批准年份:2015
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
钙结合蛋白DREAM与TRPV1的相互作用及其对TRPV1通道功能调控的研究
- 批准号:31371143
- 批准年份:2013
- 资助金额:83.0 万元
- 项目类别:面上项目
以星形胶质细胞为靶点阐明慢性疼痛机制:DREAM信号通路的研究
- 批准号:31070974
- 批准年份:2010
- 资助金额:37.0 万元
- 项目类别:面上项目
DREAM/Calsenilin/KChIP3与NMDA受体的相互作用及其细胞保护作用研究
- 批准号:30900582
- 批准年份:2009
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
重组慢病毒介导的时空特异性DREAM基因沉默治疗神经病理性疼痛
- 批准号:30872427
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
中枢神经系统内新型转录因子DREAM对外周电刺激的频率响应性
- 批准号:30470550
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Reactions without walls: Droplet Reaction Module for rapid chemical synthesis (DReaM)
无壁反应:用于快速化学合成的液滴反应模块 (DReaM)
- 批准号:
2896295 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Studentship
Intervention on Dream Emotionality by Olfactory Stimulation during REM Sleep
快速眼动睡眠期间嗅觉刺激对梦情绪的干预
- 批准号:
22KJ3165 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Priming CUREs to dissect how the DREAM complex protects cell identity
职业生涯:启动 CURE 来剖析 DREAM 复合物如何保护细胞身份
- 批准号:
2238540 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
Role of the DREAM complex in the lung tumor suppression
DREAM 复合物在抑制肺部肿瘤中的作用
- 批准号:
10575588 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
PROJECT DREAM: Diversity Recruited into Engineering through Advanced Making
项目梦想:通过先进制造将多样性引入工程领域
- 批准号:
2246957 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Digital Transformation of Electromagnetic Material Design and Manufacturing for Future Wireless Connectivity (DREAM)
面向未来无线连接的电磁材料设计和制造的数字化转型 (DREAM)
- 批准号:
EP/X02542X/1 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Research Grant
DREAM - Distributor royalties efficient automation management
DREAM - 经销商特许权使用费高效自动化管理
- 批准号:
10069106 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Collaborative R&D