Collaborative Research: Advancing Understanding of Aerosol-Cloud Feedback Using the World's First Global Climate Model with Explicit Boundary Layer Turbulence
合作研究:利用世界上第一个具有明确边界层湍流的全球气候模型增进对气溶胶云反馈的理解
基本信息
- 批准号:1912130
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aerosols, meaning tiny particles suspended in the atmosphere, play a key role in cloud formation, as cloud droplets and ice particles are produced when water vapor condenses onto aerosols. When more aerosols are present clouds tend to have a larger number of smaller droplets, making them brighter and more effective in reflecting sunlight back to space. Thus increases in aerosol amount due to industrial activity can increase the brightness of clouds, resulting in a cooling effect on climate. The extent to which the global temperature increase from greenhouse warming has been offset by human-induced radiative forcing from aerosol-cloud-interactions (RFaci) is an important and unsolved problem in climate science.One obstacle to progress on RFaci is the difficulty of performing computer simulations which explicitly represent cloud properties yet cover the whole earth, so that global climatic effects can be assessed. Cloud motions are turbulent and require models with grid points spaced a fraction of a kilometer apart, while global model grid spacing is typically tens to hundreds of kilometers. To bridge this scale gap the PIs have developed an ultraparameterized (UP) model, meaning a global model with coarse grid spacing in which each grid box contains a fine-scale cloud resolving model with a domain size much smaller than the grid box. The model is challenging both scientifically and computationally, and the project includes a concerted effort to improve computational efficiency to make simulations practical.The research addresses several specific questions regarding RFaci. One question is why climate models tend to overestimate RFaci compared to estimates from satellites, in some cases by a factor of two. Comparisons between the UP model and satellite observations will be facilitated by a nudging methodology, in which external forcing is used to constrain the simulated weather patterns to match the days when the satellite observations were taken. The nudging minimizes differences between simulated and satellite-estimated RFaci due to incorrect simulation of large-scale circulation features, allowing attribution of differences to aerosol-cloud interactions.The work has broader impacts due to the societal implications of high versus low RFaci: if the cooling effect of industrially-driven RFaci is large, the strength of greenhouse warming must be at the high end of current estimates in order to explain the warming seen over the past century. Likewise, if industrial RFaci cooling was small over the last century, the sensitivity of global temperature to greenhouse gas increase is likely to be on the lower end of its estimated range. RFaci is thus among the largest uncertainties in determining climate sensitivity and the severity of climate change impacts. In addition, software developed under the project is made available to the research community, in part through a version of the Community Earth System Model. The project provides support and training for a postdoctoral research scholar, thereby providing workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气溶胶是指悬浮在大气中的微小颗粒,在云的形成中起着关键作用,因为当水蒸气凝结到气溶胶上时会产生云滴和冰粒。 当更多的气溶胶存在时,云层往往会有更多的小水滴,使它们更明亮,更有效地将阳光反射回太空。因此,工业活动导致的气溶胶量增加会增加云层的亮度,从而对气候产生降温效应。 气溶胶-云相互作用(RFaci)对温室效应造成的全球气温升高的影响在多大程度上被人为辐射强迫所抵消是气候科学中一个重要而尚未解决的问题,阻碍RFaci研究进展的一个障碍是很难通过计算机模拟来明确地描述云的特性,从而评估全球气候效应。云的运动是湍流的,需要模型的网格点间距为几分之一公里,而全球模型的网格间距通常为数十至数百公里。 为了弥合这一尺度差距,PI开发了一个超参数化(UP)模型,这意味着一个具有粗网格间距的全球模型,其中每个网格框包含一个精细尺度的云解析模型,其域大小远小于网格框。 该模型在科学和计算上都具有挑战性,该项目包括共同努力提高计算效率,使模拟实用。该研究解决了有关RFaci的几个具体问题。 一个问题是,为什么气候模型往往高估RFaci相比,从卫星的估计,在某些情况下的两倍。UP模式和卫星观测之间的比较将通过一种轻推方法来促进,在这种方法中,外部强迫被用来限制模拟的天气模式,以匹配卫星观测的日期。 由于对大尺度环流特征的不正确模拟,轻推最大限度地减少了模拟和卫星估计的RFaci之间的差异,允许将差异归因于气溶胶-云相互作用。由于高与低RFaci的社会影响,这项工作具有更广泛的影响:如果工业驱动的RFaci的冷却效果大,温室升温的强度必须处于目前估计的高端,才能解释过去世纪的升温现象。 同样,如果工业RFaci冷却在上个世纪很小,全球温度对温室气体增加的敏感性可能处于其估计范围的低端。因此,RFACI是确定气候敏感性和气候变化影响严重程度的最大不确定性之一。此外,还向研究界提供了在该项目下开发的软件,部分是通过社区地球系统模型的一个版本。 该项目为博士后研究学者提供支持和培训,从而提供劳动力发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Load‐Balancing Intense Physics Calculations to Embed Regionalized High‐Resolution Cloud Resolving Models in the E3SM and CESM Climate Models
负载平衡密集物理计算,将区域化高分辨率云解析模型嵌入到 E3SM 和 CESM 气候模型中
- DOI:10.1029/2021ms002841
- 发表时间:2022
- 期刊:
- 影响因子:6.8
- 作者:Peng, Liran;Pritchard, Michael;Hannah, Walter M.;Blossey, Peter N.;Worley, Patrick H.;Bretherton, Christopher S.
- 通讯作者:Bretherton, Christopher S.
The Role of Multiscale Interaction in Tropical Cyclogenesis and Its Predictability in Near-Global Aquaplanet Cloud-Resolving Simulations
- DOI:10.1175/jas-d-20-0021.1
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Pornampai Narenpitak;C. Bretherton;M. Khairoutdinov
- 通讯作者:Pornampai Narenpitak;C. Bretherton;M. Khairoutdinov
The Impact of Resolving Subkilometer Processes on Aerosol‐Cloud Interactions of Low‐Level Clouds in Global Model Simulations
- DOI:10.1029/2020ms002274
- 发表时间:2020-11
- 期刊:
- 影响因子:6.8
- 作者:C. Terai;M. Pritchard;P. Blossey;C. Bretherton
- 通讯作者:C. Terai;M. Pritchard;P. Blossey;C. Bretherton
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Blossey其他文献
Peter Blossey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Blossey', 18)}}的其他基金
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
- 批准号:
2218829 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: EUREC4A-iso--Constraining the Interplay between Clouds, Convection, and Circulation with Stable Isotopologues of Water Vapor
合作研究:EUREC4A-iso——用水蒸气的稳定同位素体约束云、对流和环流之间的相互作用
- 批准号:
1938108 - 财政年份:2019
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant
Collaborative Research: Isotopic Fractionation in Snow (IFRACS)
合作研究:雪中同位素分馏 (IFRACS)
- 批准号:
1260368 - 财政年份:2013
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414606 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414608 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414605 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414604 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
- 批准号:
2314916 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant