Collaborative Research: Advancing Understanding of Aerosol-Cloud Feedback Using the World's First Global Climate Model with Explicit Boundary Layer Turbulence

合作研究:利用世界上第一个具有明确边界层湍流的全球气候模型增进对气溶胶云反馈的理解

基本信息

  • 批准号:
    1912134
  • 负责人:
  • 金额:
    $ 47.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Aerosols, meaning tiny particles suspended in the atmosphere, play a key role in cloud formation, as cloud droplets and ice particles are produced when water vapor condenses onto aerosols. When more aerosols are present clouds tend to have a larger number of smaller droplets, making them brighter and more effective in reflecting sunlight back to space. Thus increases in aerosol amount due to industrial activity can increase the brightness of clouds, resulting in a cooling effect on climate. The extent to which the global temperature increase from greenhouse warming has been offset by human-induced radiative forcing from aerosol-cloud-interactions (RFaci) is an important and unsolved problem in climate science.One obstacle to progress on RFaci is the difficulty of performing computer simulations which explicitly represent cloud properties yet cover the whole earth, so that global climatic effects can be assessed. Cloud motions are turbulent and require models with grid points spaced a fraction of a kilometer apart, while global model grid spacing is typically tens to hundreds of kilometers. To bridge this scale gap the PIs have developed an ultraparameterized (UP) model, meaning a global model with coarse grid spacing in which each grid box contains a fine-scale cloud resolving model with a domain size much smaller than the grid box. The model is challenging both scientifically and computationally, and the project includes a concerted effort to improve computational efficiency to make simulations practical.The research addresses several specific questions regarding RFaci. One question is why climate models tend to overestimate RFaci compared to estimates from satellites, in some cases by a factor of two. Comparisons between the UP model and satellite observations will be facilitated by a nudging methodology, in which external forcing is used to constrain the simulated weather patterns to match the days when the satellite observations were taken. The nudging minimizes differences between simulated and satellite-estimated RFaci due to incorrect simulation of large-scale circulation features, allowing attribution of differences to aerosol-cloud interactions.The work has broader impacts due to the societal implications of high versus low RFaci: if the cooling effect of industrially-driven RFaci is large, the strength of greenhouse warming must be at the high end of current estimates in order to explain the warming seen over the past century. Likewise, if industrial RFaci cooling was small over the last century, the sensitivity of global temperature to greenhouse gas increase is likely to be on the lower end of its estimated range. RFaci is thus among the largest uncertainties in determining climate sensitivity and the severity of climate change impacts. In addition, software developed under the project is made available to the research community, in part through a version of the Community Earth System Model. The project provides support and training for a postdoctoral research scholar, thereby providing workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气溶胶是指悬浮在大气中的微小颗粒,在云的形成中发挥着关键作用,因为当水蒸气凝结到气溶胶上时会产生云滴和冰粒。当存在更多的气溶胶时,云层往往会有更多更小的水滴,使它们更明亮,更有效地将阳光反射回太空。因此,工业活动导致的气溶胶量增加会增加云的亮度,从而对气候产生降温效应。气溶胶-云-相互作用(RFaci)引起的人为辐射强迫在多大程度上抵消了温室气体变暖导致的全球气温升高,是气候科学中一个重要且尚未解决的问题。RFaci研究进展的一个障碍是难以进行计算机模拟,以明确地表示云的特性而覆盖整个地球,以便评估全球气候影响。云的运动是湍流的,需要模型的网格点间距为几分之一公里,而全球模型的网格间距通常为几十到数百公里。为了弥合这一比例差距,PI开发了一个超参数(UP)模型,这意味着具有粗略网格间距的全球模型,其中每个网格框包含一个域大小远远小于网格框的精细比例云解析模型。该模型在科学和计算上都具有挑战性,该项目包括共同努力提高计算效率,以使模拟实用。研究解决了几个关于RFaci的具体问题。一个问题是,为什么气候模型往往比卫星估计的RFaci高估,在某些情况下高估了两倍。UP模型和卫星观测之间的比较将通过一种轻推方法来促进,在这种方法中,外部强迫被用来约束模拟的天气模式,以匹配卫星观测的日期。由于对大尺度环流特征的错误模拟,允许将差异归因于气溶胶-云相互作用,因此微调将模拟的RFaci和卫星估计的RFaci之间的差异最小化。由于RFaci的高和低的社会影响,这项工作具有更广泛的影响:如果工业驱动的RFaci的冷却效应很大,那么温室气体变暖的强度必须处于当前估计的高端,才能解释过去一个世纪出现的变暖。同样,如果上个世纪工业RFaci的降温幅度很小,那么全球气温对温室气体增加的敏感度可能会处于其估计范围的较低端。因此,RFaci是决定气候敏感性和气候变化影响严重程度的最大不确定性之一。此外,在该项目下开发的软件部分通过共同体地球系统模型的一个版本向研究界提供。该项目为博士后研究学者提供支持和培训,从而提供劳动力发展。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Load‐Balancing Intense Physics Calculations to Embed Regionalized High‐Resolution Cloud Resolving Models in the E3SM and CESM Climate Models
负载平衡密集物理计算,将区域化高分辨率云解析模型嵌入到 E3SM 和 CESM 气候模型中
  • DOI:
    10.1029/2021ms002841
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Peng, Liran;Pritchard, Michael;Hannah, Walter M.;Blossey, Peter N.;Worley, Patrick H.;Bretherton, Christopher S.
  • 通讯作者:
    Bretherton, Christopher S.
Lower Tropospheric Processes: A Control on the Global Mean Precipitation Rate
对流层低层过程:对全球平均降水率的控制
  • DOI:
    10.1029/2020gl091169
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Hendrickson, Jacob M.;Terai, Christopher R.;Pritchard, Michael S.;Caldwell, Peter M.
  • 通讯作者:
    Caldwell, Peter M.
The Impact of Resolving Subkilometer Processes on Aerosol‐Cloud Interactions of Low‐Level Clouds in Global Model Simulations
  • DOI:
    10.1029/2020ms002274
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    C. Terai;M. Pritchard;P. Blossey;C. Bretherton
  • 通讯作者:
    C. Terai;M. Pritchard;P. Blossey;C. Bretherton
Conservation of Dry Air, Water, and Energy in CAM and Its Potential Impact on Tropical Rainfall
CAM 中干燥空气、水和能源的保护及其对热带降雨的潜在影响
  • DOI:
    10.1175/jcli-d-21-0512.1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Harrop, Bryce E.;Pritchard, Michael S.;Parishani, Hossein;Gettelman, Andrew;Hagos, Samson;Lauritzen, Peter H.;Leung, L. Ruby;Lu, Jian;Pressel, Kyle G.;Sakaguchi, Koichi
  • 通讯作者:
    Sakaguchi, Koichi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Pritchard其他文献

Applying the service profit chain to analyse retail performance
应用服务利润链分析零售绩效
Electromyography Signal-Based Gesture Recognition for Human-Machine Interaction in Real-Time Through Model Calibration
基于肌电信号的手势识别通过模型校准实现实时人机交互
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christos Dolopikos;Michael Pritchard;Jordan J. Bird;D. Faria
  • 通讯作者:
    D. Faria

Michael Pritchard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Pritchard', 18)}}的其他基金

Collaborative Research: HDR Elements: Software for a new machine learning based parameterization of moist convection for improved climate and weather prediction using deep learning
合作研究:HDR Elements:基于新机器学习的湿对流参数化软件,利用深度学习改进气候和天气预报
  • 批准号:
    1835863
  • 财政年份:
    2018
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Role of Cloud Albedo and Land-Atmosphere Interactions on Continental Tropical Climates
合作研究:云反照率和陆地-大气相互作用对大陆热带气候的作用
  • 批准号:
    1734164
  • 财政年份:
    2017
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: EaSM-3: Understanding the Development of Precipitation Biases in CESM and the Superparameterized CESM on Seasonal to Decadal Timescales
合作研究:EaSM-3:了解CESM和超参数化CESM在季节到十年时间尺度上的降水偏差的发展
  • 批准号:
    1419518
  • 财政年份:
    2014
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
SDEST: Teaching Research Ethics - An Institutional Change Model
SDEST:教学研究伦理——制度变革模型
  • 批准号:
    0115480
  • 财政年份:
    2001
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Continuing Grant
Infusion of Ethics and Values in Pre-College Science Teaching
大学前科学教学中伦理和价值观的注入
  • 批准号:
    9601546
  • 财政年份:
    1997
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Ethics in Engineering: Good Works
工程道德:好作品
  • 批准号:
    9320257
  • 财政年份:
    1994
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Teaching Engineering Ethics: A Case Study Approach
工程伦理教学:案例研究方法
  • 批准号:
    8820837
  • 财政年份:
    1989
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414608
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414605
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414604
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
  • 批准号:
    2314916
  • 财政年份:
    2023
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了