RUI: Investigations of Mirror Coatings for A+ and Third Generation Gravitational Wave Detectors
RUI:第一代和第三代引力波探测器镜面涂层的研究
基本信息
- 批准号:1912699
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research in gravitational wave detector instrumentation and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. The Laser Interferometer Gravitational-wave Observatory (LIGO) project has opened new windows to observe and understand the universe. The first direct detection of gravitational waves was also the first observation of the inspiral and merger of binary black holes. While black hole mergers are one of the most energetic events in the universe, they were not visible by electromagnetic telescopes. Now, after viewing several such observations, LIGO is developing a catalogue of the population of binary black hole systems. In addition, LIGO's observation of a binary neutron star merger inaugerated the field of multi-messenger astronomy. These simultaneous observations of gravitational waves and light allow for deeper insights into neutron star structure, and they allow us to test fundamental concepts like the speed of gravitational waves and the Hubble constant. The major challenges in this field are the noise sources that limit sensitivity, most notably thermal noise in LIGO's mirror coatings. LIGO is an interferometer, an L-shaped detector with 4 km long arms, which detects gravitational waves by observing tiny differential stretching in the arms. Identical light waves, emitted at the vertex, pass down each arm to a mirror and are reflected back. Any phase difference in the recombining beams corresponds to a difference in arm length. Thus detecting gravitational waves depends on the precision detection of the surface of the end mirrors, but for LIGO that precision is a daunting one billionth of an atom width. The mirrors, at room temperature (300; K), vibrate due to thermal energy at the mirror's resonant frequencies, which are much higher than the gravitational waves frequencies that LIGO can detect. If the mirrors were composed of an ideal elastic material, these vibrations could be ignored and of no concern. Indeed the fused silica glass used for the mirror substrates is a nearly ideal elastic material. However the highly reflective mirror coatings have internal friction that shifts some of the vibrational energy down to gravitational wave frequencies. That motion, which masks the gravitational wave signal, is mirror coating thermal noise (CTN). This research project is designed to understand and reduce CTN in order to improve LIGO's sensitivity. This project aims to reduce coating thermal noise by lowering the dissipation, or mechanical loss, in the coating materials. This dissipation occurs when a fluctuation in thermal or strain energy causes a dissipative state transition. This dissipative process is commonly modeled as an asymmetric double-well potential. The dissipation is reduced by increasing the energy asymmetry in the states, which lowers the transition probability. The team will investigate crystalline coatings, specifically AlGaAs, which has excellent optical properties. The AlGaAs elastic loss is very low for small samples, but further study is needed to understand the loss for large coatings. The team will also investigate stabilized amorphous dielectric coatings. Amorphous dielectric coatings produced by ion beam sputtering can have excellent optical properties, but they typically have high elastic loss. Annealing lowers the dissipation by allowing the material to relax into its lowest energy state. But annealing is limited by low crystallization temperature for these materials. Stabilized amorphous coatings are mixtures of dielectrics in which material mixture frustrates crystallization and allows a higher annealing temperature and lower elastic loss. The team will collaborate on experiments to test if the effects of annealing can be achieved by heating the substrate during deposition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持引力波探测器仪器的研究,并阐述了美国国家科学基金会“宇宙之窗”重大构想的优先领域。激光干涉仪引力波天文台(LIGO)项目为观察和理解宇宙打开了新的窗口。第一次直接探测到引力波也是第一次观测到双星黑洞的激发和合并。虽然黑洞合并是宇宙中能量最大的事件之一,但电磁望远镜看不到它们。现在,在观察了几次这样的观测之后,LIGO正在开发一份双星黑洞系统数量的目录。此外,LIGO对双星中子星合并的观测也给多信使天文学领域带来了新的曙光。这些对引力波和光的同时观测使我们能够更深入地了解中子星的结构,并允许我们测试基本概念,如引力波的速度和哈勃常数。该领域的主要挑战是限制灵敏度的噪声源,尤其是LIGO镜面涂层中的热噪声。LIGO是一种干涉仪,是一种L形状的探测器,有4公里长的手臂,它通过观察手臂中微小的差异伸展来探测引力波。相同的光波在顶点发射,沿着每个手臂传递到镜子并被反射回来。重组光束中的任何相位差都对应于臂长的不同。因此,探测引力波依赖于对端镜表面的精确检测,但对于LIGO来说,这种精度是原子宽度的十亿分之一。在室温(300;K)下,反射镜在反射镜的共振频率上由于热能而振动,这远远高于LIGO可以检测到的引力波频率。如果镜子是由理想的弹性材料组成的,这些振动可以忽略不计。事实上,用于镜面基板的熔融石英玻璃是一种近乎理想的弹性材料。然而,高反射率的镜面涂层具有内耗,可以将部分振动能量向下转移到引力波频率。这种掩盖引力波信号的运动就是镜面热噪声(CTN)。本研究旨在了解和减少CTN,以提高LIGO的灵敏度。该项目旨在通过降低涂层材料中的耗散或机械损耗来降低涂层的热噪声。当热能或应变能的涨落引起耗散状态转变时,就会发生这种耗散。这种耗散过程通常被建模为非对称双势垒势。通过增加态的能量不对称性来降低耗散,从而降低了跃迁几率。该团队将研究晶态涂层,特别是具有优异光学性能的AlGaAs。对于小的样品,AlGaAs的弹性损耗很低,但对于大的涂层,还需要进一步的研究来理解这种损耗。该团队还将研究稳定的非晶介电涂层。离子束溅射制备的非晶介质膜具有优良的光学性能,但通常具有较高的弹性损耗。通过允许材料松弛到其最低能量状态,退火降低了耗散。但这些材料的晶化温度较低,限制了材料的退火热处理。稳定的非晶态涂层是一种混合介质,其中的材料混合物阻碍了晶化,并允许较高的热处理温度和较低的弹性损失。该团队将合作进行实验,以测试是否可以通过在沉积过程中加热衬底来实现退火的效果。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Substrate-transferred GaAs/AlGaAs crystalline coatings for gravitational-wave detectors
- DOI:10.1063/5.0140663
- 发表时间:2023-03-13
- 期刊:
- 影响因子:4
- 作者:Cole, G. D.;Ballmer, S. W.;Yu, J.
- 通讯作者:Yu, J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Penn其他文献
Steven Penn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Penn', 18)}}的其他基金
MRI: Track 1 Development of Large Optic Crystalline Coating Characterization Instrument (LOCCCI) for Gravitational Wave Detectors
MRI:用于引力波探测器的大型光学晶体涂层表征仪器 (LOCCCI) 的第一轨开发
- 批准号:
2320711 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Center for Coatings Research
合作研究:涂料研究中心
- 批准号:
2309292 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
RUI: Investigations of Mirror Thermal Noise for Gravitational Wave Detectors
RUI:引力波探测器镜面热噪声研究
- 批准号:
2208079 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: LSC Center for Coatings Research
合作研究:LSC 涂料研究中心
- 批准号:
2011688 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: LSC Center for Coatings Research
合作研究:LSC 涂料研究中心
- 批准号:
1707863 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
RUI: Proposal to Investigate Coating and Substrate Thermal Noise for Advanced and Next Generation Gravitational Wave Detectors
RUI:研究先进和下一代引力波探测器的涂层和基底热噪声的提案
- 批准号:
1611821 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
RUI: Investigate Thermal and Upconversion Noise for Advanced LIGO and Third Generation Detectors
RUI:研究先进 LIGO 和第三代探测器的热噪声和上转换噪声
- 批准号:
1307423 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
An RUI Proposal to Study Thermal Noise and Bilinear Noise in LIGO and Advanced LIGO
RUI 研究 LIGO 和高级 LIGO 中热噪声和双线性噪声的提案
- 批准号:
1002585 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
An RUI Proposal to Investigate Thermal Noise and Higher-Order Statistical Noise in Initial and Advanced LIGO
RUI 研究初始和高级 LIGO 中的热噪声和高阶统计噪声的提案
- 批准号:
0653590 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
An RUI Research Proposal on Minimizing Thermal Noise in Advanced LIGO Test Mass Optics and Exploring Bilinear Noise in Initial LIGO Data
RUI 关于最小化先进 LIGO 测试质量光学器件中的热噪声和探索初始 LIGO 数据中的双线性噪声的研究提案
- 批准号:
0355118 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似海外基金
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
NE/Z000254/1 - 财政年份:2025
- 资助金额:
$ 24万 - 项目类别:
Research Grant
SBIR Phase II: Development of a Novel Measurement Technology to Enable Longitudinal Multiomic Investigations of the Gut Microbiome
SBIR 第二阶段:开发新型测量技术以实现肠道微生物组的纵向多组学研究
- 批准号:
2314685 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Cooperative Agreement
CAREER: Observational and Modeling Investigations of Pulsating Aurora Electrodynamics
职业:脉动极光电动力学的观测和建模研究
- 批准号:
2339961 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
2334541 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
- 批准号:
MR/Y503472/1 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Research Grant
CAS: Cu, Fe, and Ni Pincer Complexes: A Platform for Fundamental Mechanistic Investigations and Reaction Discovery
CAS:Cu、Fe 和 Ni 钳配合物:基础机理研究和反应发现的平台
- 批准号:
2349827 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Natural Traces: Natural Traces in forensic investigations - how the analysis of non-human evidence can solve crime
自然痕迹:法医调查中的自然痕迹 - 非人类证据分析如何解决犯罪
- 批准号:
EP/Y036743/1 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Investigations into aryl nitriles for protein modification via an untapped mode of reactivity
通过未开发的反应模式研究芳基腈用于蛋白质修饰
- 批准号:
EP/X037819/1 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
2334542 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant