CAREER: Unlocking Microbial Condensed Tannin Resistance Mechanisms: Scaling from Enzymes to Biomes

职业:解锁微生物缩合单宁抗性机制:从酶扩展到生物群落

基本信息

  • 批准号:
    1912915
  • 负责人:
  • 金额:
    $ 88.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Compounds known as condensed tannins (CTs) impact the ability of microbial communities to synthesize biofuels, detoxify industrial waste streams, perform critical carbon cycling in soils, and fuel nutrition in humans and animals. Despite their global importance, microbial responses to CTs are currently a mystery. This research project targets this substantial knowledge gap to identify the microorganisms and their enzymes that degrade CTs across a range of ecosystems. Beyond scientific advances, this project will also support significant curricular development in the introductory microbiology course at The Ohio State University. Through the development of a Course-based Undergraduate Research Experience (CURE), this project will allow hundreds of undergraduate student-scientists to perform authentic research; experiences shown to enhance scientific education and boost retention of students in scientific disciplines. This project will create a modified undergraduate laboratory class where CURE students participate in the discovery and classification of CT degrading microorganisms new to science, generating data that will be integrated into the research aims of this project. Additionally, the scientific data generated here will be transmitted more broadly to the scientific community via the production of an interactive, web-based bioinformatics platform. As part of the integrated research and educational objectives, this research will generate fundamental knowledge of CT-microbe interactions with direct applications to agricultural, industrial, and health resource management. Today the diversity of microorganisms, enzymes, and pathways mediating microbial CT degradation are currently unknown. The overarching goal of this research project is to test the central hypothesis that mechanisms for tolerance and degradation of CTs are widely encoded in microbial genomes across ecosystems, yet currently represent a cryptic microbial metabolism. This project tracks CT metabolism from organismal to ecosystem scales, identifying the enzymatic catalysts of organismal CT tolerance and degradation, the coordinated responses to CT perturbation in microbial communities, and the extent of CT metabolisms across ecosystems. Here, parallel isolate and community genomics paired to expression analyses and high-resolution CT metabolite data will elucidate the organisms, enzymes, and metabolisms mediating CT degradation and resistance. Outcomes from this research project include (1) knowledge of the microbial physiology and ecology of CTs, (2) discovery of novel degradative enzymes that are likely common to anaerobic microorganisms, (3) development of a CT library of biological and metabolite signatures resulting in the identification of microbial polyphenolics and their degradation products.
被称为缩合单宁(CT)的化合物影响微生物群落合成生物燃料,解毒工业废物流,在土壤中进行关键的碳循环以及为人类和动物提供营养的能力。尽管它们具有全球重要性,但微生物对CT的反应目前仍是一个谜。该研究项目针对这一巨大的知识差距,以确定在一系列生态系统中降解CT的微生物及其酶。除了科学进步,该项目还将支持俄亥俄州州立大学微生物学入门课程的重要课程开发。通过开发基于课程的本科生研究体验(CURE),该项目将允许数百名本科生科学家进行真实的研究;经验表明,加强科学教育,提高学生在科学学科中的保留率。该项目将创建一个修改后的本科实验室类,CURE学生参与发现和分类新的CT降解微生物的科学,产生的数据将被整合到该项目的研究目标。此外,这里产生的科学数据将通过一个互动的、基于网络的生物信息学平台更广泛地传播给科学界。作为综合研究和教育目标的一部分,这项研究将产生CT微生物相互作用的基础知识,直接应用于农业,工业和卫生资源管理。目前,介导微生物CT降解的微生物、酶和途径的多样性尚不清楚。该研究项目的总体目标是测试中心假设,即CTs的耐受性和降解机制在整个生态系统的微生物基因组中广泛编码,但目前代表了一种神秘的微生物代谢。该项目跟踪从生物体到生态系统尺度的CT代谢,确定生物体CT耐受性和降解的酶催化剂,微生物群落对CT扰动的协调反应,以及整个生态系统的CT代谢程度。在这里,平行分离和社区基因组学配对表达分析和高分辨率CT代谢物数据将阐明介导CT降解和抗性的生物体,酶和代谢。该研究项目的成果包括(1)CT的微生物生理学和生态学知识,(2)发现厌氧微生物可能共有的新型降解酶,(3)开发生物和代谢物特征的CT库,从而鉴定微生物多酚及其降解产物。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conformation and Aggregation of Human Serum Albumin in the Presence of Green Tea Polyphenol (EGCg) and/or Palmitic Acid
  • DOI:
    10.3390/biom9110705
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Sun, Xiaowei;Ferguson, Haley N.;Hagerman, Ann E.
  • 通讯作者:
    Hagerman, Ann E.
DRAM for distilling microbial metabolism to automate the curation of microbiome function
  • DOI:
    10.1093/nar/gkaa621
  • 发表时间:
    2020-09-18
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Shaffer, Michael;Borton, Mikayla A.;Wrighton, Kelly C.
  • 通讯作者:
    Wrighton, Kelly C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kelly Wrighton其他文献

Kelly Wrighton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kelly Wrighton', 18)}}的其他基金

Collaborative Research: Updating iVirus - the CyVerse-powered analytical toolkit for viruses of microbes
协作研究:更新 iVirus - CyVerse 支持的微生物病毒分析工具包
  • 批准号:
    2149506
  • 财政年份:
    2022
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Continuing Grant
Leveraging Distributed Research Networks to Understand Watershed Systems
利用分布式研究网络了解流域系统
  • 批准号:
    1916527
  • 财政年份:
    2019
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Standard Grant
CAREER: Unlocking Microbial Condensed Tannin Resistance Mechanisms: Scaling from Enzymes to Biomes
职业:解锁微生物缩合单宁抗性机制:从酶扩展到生物群落
  • 批准号:
    1750189
  • 财政年份:
    2018
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Standard Grant
Unlocking the mechanisms of vibro-acoustic communication in termites
解锁白蚁振动声学通讯机制
  • 批准号:
    DP240101536
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Discovery Projects
Unlocking the potential of mini-MASS in UK waters
释放英国水域迷你 MASS 的潜力
  • 批准号:
    10109319
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Launchpad
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Research Grant
Unlocking the potential of single-photon wide-field microscopy
释放单光子宽视场显微镜的潜力
  • 批准号:
    EP/Y022491/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Research Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
  • 批准号:
    EP/X041239/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Research Grant
Unlocking the archive: reuniting Indigenous languages and their communities
解锁档案:重新统一土著语言及其社区
  • 批准号:
    IM230100544
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Mid-Career Industry Fellowships
Unlocking mine waste potential: carbon sequestration and metals extraction
释放矿山废物潜力:碳封存和金属提取
  • 批准号:
    LP230100371
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Linkage Projects
Unlocking self-healing bio-concrete through multiscale modelling
通过多尺度建模解锁自愈生物混凝土
  • 批准号:
    DP240100851
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Discovery Projects
Unlocking the ion selectivity of lithium superionic conductor membranes
解锁锂超离子导体膜的离子选择性
  • 批准号:
    DP240100497
  • 财政年份:
    2024
  • 资助金额:
    $ 88.47万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了