Finite Volume Analysis of Relativistic Field Theories Using Lattice Regularization
使用格正则化的相对论场论的有限体积分析
基本信息
- 批准号:1913010
- 负责人:
- 金额:$ 24.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum Chromo Dynamics (QCD) is a theory that describes one of the fundamental interactions in nature, namely, strong interactions. The fundamental degrees of freedom are quarks (particles) and gluons (force mediators). Gauge fields (gluons) coupled to massless fermions (quarks) have no free parameters and they have no intrinsic scale. Depending on the nature of the gauge group and the fermionic content, these theories fall into two categories upon quantization: One that maintains scale invariance and contains only massless excitations and one that breaks scale invariance and produces a rich spectrum of massive excitations. Whether the quantum theory is scale invariant or not, it is always strongly interacting and a non-perturbative formalism is necessary to study why some theories are scale invariant and the others are not. It is also necessary to study the flow from one theory to another and try to understand how a scale emerges. The PI will extract properties of theories in both classes (scale invariant and scale breaking) and study the flow of a scale invariant theory to a theory that breaks scale invariance. This will enable us to understand the emergence of the fundamental scale in strong interactions.Lattice formalism of gauge fields coupled to massless fermions is a well tested approach to the extraction of the fundamental non-perturbative properties of these theories. Theories that break scale invariance have been studied in great detail using this method. The PI will use the lattice formalism and study potentially scale invariant theories in a finite periodic box. The size of the box sets an external scale and the PI will be able to extract the scale invariant properties of a theory by studying the asymptotic behavior as a function of the external scale. By fixing the gauge group and varying the number of fermion flavors by one unit around a critical number of fermion flavors the PI will start with one theory (larger number of fermion flavors) and add a mass term for one of the fermion flavors. By varying the mass parameter from zero to infinity, the PI will be able to flow between two theories where both of them are scale invariant at the classical level but one (fewer number of fermion flavors) breaks the scale invariance at the quantum level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子色动力学(QCD)是一种描述自然界中最基本的相互作用之一,即强相互作用的理论。基本自由度是夸克(粒子)和胶子(力介体)。与无质量费米子(夸克)耦合的规范场(胶子)没有自由参数,也没有本征标度。根据规范群的性质和费米子含量的不同,这些理论在量子化后分为两类:一类保持标度不变性,只包含无质量激发;另一类打破标度不变性,产生丰富的大量激发谱。无论量子理论是不是尺度不变的,它总是强相互作用的,需要一个非微扰的形式论来研究为什么一些理论是尺度不变的,而另一些则不是。还有必要研究从一种理论到另一种理论的流动,并试图理解规模是如何出现的。PI将提取这两类理论(标度不变和标度破坏)的属性,并研究标度不变理论到打破标度不变的理论的流动。这将使我们能够理解在强相互作用中基本标度的出现。规范场与无质量费米子耦合的格子形式是提取这些理论基本非微扰性质的一种经过检验的方法。用这种方法对打破标度不变性的理论进行了详细的研究。PI将使用格子形式,并研究有限周期盒中的潜在标度不变理论。盒子的大小设置了一个外部标度,PI将能够通过研究作为外部标度的函数的渐近行为来提取理论的标度不变属性。通过固定规范群并将费米子口味的数量围绕关键数量的费米子口味改变一个单位,PI将从一个理论(更大数量的费米子口味)开始,并为其中一种费米子口味添加一个质量项。通过将质量参数从零改变到无穷大,PI将能够在两个理论之间流动,其中两个理论在经典水平上都是尺度不变的,但其中一个(较少的费米子味道)打破了量子水平的尺度不变性。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Relevance of the three-dimensional Thirring coupling at finite temperature and density
有限温度和密度下三维 Thirring 耦合的相关性
- DOI:10.1103/physrevd.102.016014
- 发表时间:2020
- 期刊:
- 影响因子:5
- 作者:Narayanan, R.
- 通讯作者:Narayanan, R.
Phase diagram of the large N Gross-Neveu model in a finite periodic box
有限周期盒中大 N Gross-Neveu 模型的相图
- DOI:10.1103/physrevd.101.096001
- 发表时间:2020
- 期刊:
- 影响因子:5
- 作者:Narayanan, R.
- 通讯作者:Narayanan, R.
Topological Gauge Actions on the Lattice as Overlap Fermion Determinants
晶格上的拓扑规范作用作为重叠费米子行列式
- DOI:10.3390/universe8060332
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Karthik, Nikhil;Narayanan, Rajamani
- 通讯作者:Narayanan, Rajamani
QED3 -Inspired Three-Dimensional Conformal Lattice Gauge Theory without Fine-Tuning
QED3 - 无需微调的三维共形晶格规范理论
- DOI:10.1103/physrevlett.125.261601
- 发表时间:2020
- 期刊:
- 影响因子:8.6
- 作者:Karthik, Nikhil;Narayanan, Rajamani
- 通讯作者:Narayanan, Rajamani
Transition in the spectral gap of the massless overlap Dirac operator coupled to Abelian fields in three dimensions
耦合到三维阿贝尔场的无质量重叠狄拉克算子的谱间隙中的转变
- DOI:10.1103/physrevd.103.094514
- 发表时间:2021
- 期刊:
- 影响因子:5
- 作者:Narayanan, Rajamani
- 通讯作者:Narayanan, Rajamani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajamani Narayanan其他文献
Chiral symmetry breaking at large Nc
大 Nc 处手性对称性破缺
- DOI:
10.1016/j.nuclphysb.2004.07.002 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Rajamani Narayanan;H. Neuberger - 通讯作者:
H. Neuberger
Large <em>N</em> QCD in two dimensions with a baryonic chemical potential
- DOI:
10.1016/j.physletb.2009.01.043 - 发表时间:
2009-03-02 - 期刊:
- 影响因子:
- 作者:
Richard Galvez;Ari Hietanen;Rajamani Narayanan - 通讯作者:
Rajamani Narayanan
Alternative to domain wall fermions
磁畴壁费米子的替代品
- DOI:
10.1103/physrevd.62.074504 - 发表时间:
2000 - 期刊:
- 影响因子:5
- 作者:
Rajamani Narayanan;Herbert Neuberger - 通讯作者:
Herbert Neuberger
Computation of the string tension in four-dimensional Yang–Mills theory using large <em>N</em> reduction
- DOI:
10.1016/j.physletb.2009.10.043 - 发表时间:
2009-11-09 - 期刊:
- 影响因子:
- 作者:
Joe Kiskis;Rajamani Narayanan - 通讯作者:
Rajamani Narayanan
Proposal for the numerical solution of planar QCD
平面QCD数值解的提议
- DOI:
10.1103/physrevd.66.025019 - 发表时间:
2002 - 期刊:
- 影响因子:5
- 作者:
J. Kiskis;Rajamani Narayanan;H. Neuberger;H. Neuberger;H. Neuberger - 通讯作者:
H. Neuberger
Rajamani Narayanan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajamani Narayanan', 18)}}的其他基金
Confinement and Conformality in Theories with Massless Fermions using Finite Volume Analysis
使用有限体积分析的无质量费米子理论中的约束和共形
- 批准号:
2310479 - 财政年份:2023
- 资助金额:
$ 24.03万 - 项目类别:
Continuing Grant
Lattice Field Theory and Hadronic Physics
晶格场论和强子物理
- 批准号:
1515446 - 财政年份:2015
- 资助金额:
$ 24.03万 - 项目类别:
Continuing Grant
Lattice Field Theory and Hadronic Physics
晶格场论和强子物理
- 批准号:
1205396 - 财政年份:2012
- 资助金额:
$ 24.03万 - 项目类别:
Continuing Grant
Lattice Field Theory and Hadronic Physics
晶格场论和强子物理
- 批准号:
0854744 - 财政年份:2009
- 资助金额:
$ 24.03万 - 项目类别:
Continuing Grant
Lattice Field Theory and Hadronic Physics
晶格场论和强子物理
- 批准号:
0555375 - 财政年份:2006
- 资助金额:
$ 24.03万 - 项目类别:
Continuing Grant
Lattice Gauge Theory with Chiral Fermions
具有手性费米子的晶格规范理论
- 批准号:
0400402 - 财政年份:2004
- 资助金额:
$ 24.03万 - 项目类别:
Standard Grant
相似海外基金
Pathophysiological analysis of the beta cell volume change elicited by pregnancy and gestational diabetes mellitus in Japanese pregnant women
日本孕妇妊娠和妊娠糖尿病引起的β细胞体积变化的病理生理学分析
- 批准号:
23K08020 - 财政年份:2023
- 资助金额:
$ 24.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three-dimensional ultrastructural analysis of heterogeneous intercellular connections using correlative volume-imaging
使用相关体积成像对异质细胞间连接进行三维超微结构分析
- 批准号:
23K09132 - 财政年份:2023
- 资助金额:
$ 24.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Confinement and Conformality in Theories with Massless Fermions using Finite Volume Analysis
使用有限体积分析的无质量费米子理论中的约束和共形
- 批准号:
2310479 - 财政年份:2023
- 资助金额:
$ 24.03万 - 项目类别:
Continuing Grant
SBIR Phase II: Innovative Platform for Low Volume Blood Coagulation Analysis
SBIR II 期:低容量凝血分析的创新平台
- 批准号:
2134020 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别:
Cooperative Agreement
Venous Waveform analysis to predict volume changes in pediatric patients during anesthesia
静脉波形分析可预测儿科患者麻醉期间的容量变化
- 批准号:
10432521 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别:
Venous Waveform analysis to predict volume changes in pediatric patients during anesthesia
静脉波形分析可预测儿科患者麻醉期间的容量变化
- 批准号:
10683968 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别:
AI system for lymph node volume analysis in oncological imaging and therapy assessment
用于肿瘤成像和治疗评估中淋巴结体积分析的人工智能系统
- 批准号:
574196-2022 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别:
University Undergraduate Student Research Awards
Brain volume and brain white matter analysis to reveal reading ability and visual-cognitive characteristics of children with dyslexia
脑容量和脑白质分析揭示阅读障碍儿童的阅读能力和视觉认知特征
- 批准号:
21KK0240 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Digital Multiplexed Analysis of Circulating Nucleic Acids in Small-Volume Blood Specimens
小体积血液样本中循环核酸的数字多重分析
- 批准号:
10467839 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别:
Digital Multiplexed Analysis of Circulating Nucleic Acids in Small-Volume Blood Specimens
小体积血液样本中循环核酸的数字多重分析
- 批准号:
10676313 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别: