RUI: Efficient Numerical Methods for Axisymmetric Problems

RUI:轴对称问题的高效数值方法

基本信息

  • 批准号:
    1913050
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

An axisymmetric problem is a problem defined on a three-dimensional (3D) domain that is symmetric with respect to an axis. These problems arise in various applications in the field of biomedical engineering, electromagnetism, and optics. An axisymmetric problem can be reduced to a sequence of two-dimensional (2D) problems by using cylindrical coordinates and a Fourier series decomposition. A discrete problem corresponding to a 2D problem is significantly smaller than a discrete problem corresponding to a 3D one, so such dimension reduction is an attractive feature considering computation time. The resulting 2D problem, however, is posed in weighted function spaces and is mathematically quite different from the analogous "standard" 2D problems, so special care is required when developing numerical methods that are well-fit for these weighted 2D problems. In this project, we will study efficient numerical techniques with solid mathematical support that can be applied to axisymmetric problems including those that arise in the treatment of various cancer treatments. The first goal of this project is to perform multigrid analysis for axisymmetric H(curl) and H(div) problems with general data including the axisymmetric time harmonic Maxwell equations. Multigrid for axisymmetric H(curl) and H(div) problems have been studied previously under the assumption that the data is independent of the rotational variable, which is not the case for most applications. Therefore, this project will bring new results for general axisymmetric problems with meaningful applications in Hepatic Microwave Ablation, an alternate treatment to liver, breast, bone, and lung cancer. Undergraduate students will be a part of evaluating the performance of multigrid in designing efficient antennas that can be used for these cancer treatments. Furthermore, this project will provide new mathematical tools to study axisymmetric problems with general data as well. The second goal of this project is to study axisymmetric state-constrained elliptic optimal control problems with axisymmetric data by using P1 finite element methods. There are very few studies done on axisymmetric optimal control problems, so this will be new and significant. The PI will also run a "Numerical Analysis Day" for local high school students with her undergraduate students from the James Madison University Association for Women in Mathematics Student Chapter.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
轴对称问题是在相对于轴对称的三维 (3D) 域上定义的问题。这些问题出现在生物医学工程、电磁学和光学领域的各种应用中。通过使用柱坐标和傅里叶级数分解,轴对称问题可以简化为一系列二维 (2D) 问题。与 2D 问题相对应的离散问题明显小于与 3D 问题相对应的离散问题,因此考虑到计算时间,这种降维是一个有吸引力的特征。然而,由此产生的二维问题是在加权函数空间中提出的,并且在数学上与类似的“标准”二维问题有很大不同,因此在开发非常适合这些加权二维问题的数值方法时需要特别小心。在这个项目中,我们将研究具有坚实数学支持的高效数值技术,这些技术可应用于轴对称问题,包括在各种癌症治疗中出现的问题。 该项目的第一个目标是使用包括轴对称时间调和麦克斯韦方程在内的一般数据对轴对称 H(curl) 和 H(div) 问题进行多重网格分析。轴对称 H(curl) 和 H(div) 问题的多重网格之前已经在假设数据独立于旋转变量的情况下进行了研究,但大多数应用情况并非如此。因此,该项目将为一般轴对称问题带来新的结果,并在肝脏微波消融(肝癌、乳腺癌、骨癌和肺癌的替代治疗)中具有有意义的应用。本科生将参与评估多重网格在设计可用于这些癌症治疗的高效天线方面的性能。此外,该项目还将提供新的数学工具来研究一般数据的轴对称问题。 该项目的第二个目标是利用P1有限元方法研究轴对称数据下的轴对称状态约束椭圆最优控制问题。关于轴对称最优控制问题的研究很少,因此这将是新的且有意义的。 PI 还将与她来自詹姆斯麦迪逊大学女性数学学生分会的本科生一起为当地高中生举办“数值分析日”。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher Order Fourier Finite Element Methods for Hodge Laplacian Problems on Axisymmetric Domains
P1 finite element methods for a weighted elliptic state-constrained optimal control problem
  • DOI:
    10.1007/s11075-020-00955-0
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    M. Oh;Lina Ma;Kening Wang
  • 通讯作者:
    M. Oh;Lina Ma;Kening Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minah Oh其他文献

Concepts for Computer Vision
计算机视觉的概念
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang;Hoi Tin Kong;Minah Oh;P. Sanan;Ying Wang
  • 通讯作者:
    Ying Wang

Minah Oh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
  • 批准号:
    23H01622
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
  • 批准号:
    EP/W007436/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPAS-2020-00102
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Developing Efficient Numerical Algorithms Using Fast Bayesian Random Forests
使用快速贝叶斯随机森林开发高效的数值算法
  • 批准号:
    2748743
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPIN-2020-06278
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了