Universal Mechanism of Turbulence-Induced Deflagration-to-Detonation Transition from Terrestrial Chemical Systems to Supernovas
从陆地化学系统到超新星的湍流引起的爆燃到爆炸转变的通用机制
基本信息
- 批准号:1914453
- 负责人:
- 金额:$ 31.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Efforts to predict and control the onset of detonation waves, i.e. combustion driven shock waves, have been a serious challenge for research community and is important for a wide range of applications where detonations can be beneficial or harmful. In confined spaces, detonations can naturally develop from low-speed deflagration or laminar flames through interactions with compressible or shock waves. However, in unconfined spaces the mechanism of transition from a low speed deflagration wave to a detonation wave remains unclear. Findings from this research can apply to development of new power generation and propulsion systems, e.g., gas turbine engines and Rotating Detonation Engines (RDEs), and industrial safety of mining operations, fuel-storage, chemical processing, and nuclear power-generation facilities, as well as unbounded astrophysical systems such as supernova explosions. Additionally, this work will have a broader impact by preparing next generation of scientists and engineers to be leaders in turbulent reacting flows. Students involved in the research and education will understand the role of turbulence in improving the efficiency of combustion-based systems. The overarching goal is to drive student growth in STEM disciplines through outreach, learning, and professional education. This research explores a novel mechanism through which fast turbulent flames can become intrinsically unstable and spontaneously transition to a detonation even in completely unconfined environments. The goal of this project is to develop a comprehensive understanding of the spontaneous runaway mechanism of turbulent flames, and Turbulence-induced Deflagration-to-Detonation Transition (TDDT). The runaway mechanism of compressible turbulent flames will be experimentally explored in a unique “Turbulent Shock Tube” (TST) facility. Advanced ultra-fast laser diagnostic techniques are used for the investigation. The research entails several novel studies of high-speed compressible turbulent flames and combustion that is fundamental to many modern energy and propulsion systems, such as gas-turbine/internal-combustion engines to scramjets and rotating detonation engines (RDEs), to exploding stars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预测和控制爆震波(即燃烧驱动的冲击波)的开始一直是研究界面临的严峻挑战,对于爆震波可能有益或有害的广泛应用非常重要。在密闭空间中,通过与可压缩波或激波的相互作用,低速爆燃或层流火焰可以自然地发生爆炸。然而,在非密闭空间中,低速爆燃波向爆震波过渡的机理尚不清楚。这项研究的发现可以应用于开发新的发电和推进系统,例如燃气涡轮发动机和旋转爆震发动机(RDEs),以及采矿作业、燃料储存、化学加工和核发电设施的工业安全,以及无界天体物理系统,如超新星爆炸。此外,这项工作将通过培养下一代科学家和工程师成为湍流反应流的领导者而产生更广泛的影响。参与研究和教育的学生将了解湍流在提高燃烧系统效率方面的作用。总体目标是通过外展、学习和专业教育推动STEM学科的学生成长。本研究探索了一种新的机制,通过这种机制,快速湍流火焰即使在完全无限制的环境中也能变得内在不稳定并自发地过渡到爆轰。该项目的目标是全面了解湍流火焰的自发失控机制,以及湍流诱导的爆燃-爆轰过渡(TDDT)。本文将在一个独特的“湍流激波管”(TST)装置上实验探讨可压缩湍流火焰的失控机制。采用先进的超快速激光诊断技术进行研究。这项研究需要对高速可压缩湍流火焰和燃烧进行一些新的研究,这是许多现代能源和推进系统的基础,例如燃气轮机/内燃机到超燃冲压发动机和旋转爆震发动机(RDEs),再到爆炸恒星。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spontaneous runaway of fast turbulent flames for turbulence-induced deflagration-to-detonation transition
湍流引起的爆燃到爆炸转变的快速湍流火焰的自发失控
- DOI:10.1063/5.0078556
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Chambers, Jessica;Chin, Hardeo M.;Poludnenko, Alexei Y.;Gamezo, Vadim N.;Ahmed, Kareem A.
- 通讯作者:Ahmed, Kareem A.
The evolution of pressure gain in turbulent fast flames
- DOI:10.1016/j.combustflame.2021.111641
- 发表时间:2021-12
- 期刊:
- 影响因子:4.4
- 作者:Hardeo Chin;J. Chambers;Jonathan Sosa;A. Poludnenko;V. Gamezo;K. Ahmed
- 通讯作者:Hardeo Chin;J. Chambers;Jonathan Sosa;A. Poludnenko;V. Gamezo;K. Ahmed
The effects of flame generated turbulence for turbulent-induced deflagration to detonation transition
- DOI:10.1016/j.proci.2022.09.068
- 发表时间:2022-11
- 期刊:
- 影响因子:3.4
- 作者:R. Hytovick;Cal J. Rising;A. Morales;Tommy Genova;Joshua Berson;K. Ahmed
- 通讯作者:R. Hytovick;Cal J. Rising;A. Morales;Tommy Genova;Joshua Berson;K. Ahmed
The evolution of fast turbulent deflagrations to detonations
- DOI:10.1063/5.0144663
- 发表时间:2023-04
- 期刊:
- 影响因子:4.6
- 作者:R. Hytovick;J. Chambers;Hardeo Chin;V. Gamezo;A. Poludnenko;K. Ahmed
- 通讯作者:R. Hytovick;J. Chambers;Hardeo Chin;V. Gamezo;A. Poludnenko;K. Ahmed
Chapman–Jouguet deflagration criteria and compressibility dynamics of turbulent fast flames for turbulence-induced deflagration-to-detonation transition
Chapman Jouguet 爆燃准则和湍流快速火焰的压缩动力学,用于湍流引起的爆燃到爆炸的转变
- DOI:10.1063/5.0144662
- 发表时间:2023
- 期刊:
- 影响因子:4.6
- 作者:Chin, Hardeo;Chambers, Jessica;Poludnenko, Alexei;Gamezo, Vadim N.;Ahmed, Kareem A.
- 通讯作者:Ahmed, Kareem A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kareem Ahmed其他文献
Quantification of detonation regularity
爆轰规律性的量化
- DOI:
10.1016/j.combustflame.2025.114043 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:6.200
- 作者:
Rachel Hytovick;Liliana Berson;Robyn Cideme;Kareem Ahmed - 通讯作者:
Kareem Ahmed
Realization of a standing normal detonation for hypersonic propulsion
- DOI:
10.1016/j.combustflame.2024.113780 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Adam Kotler;Anthony Morales;Sheikh Salauddin;Daniel Rosato;Mason Thornton;Hardeo M. Chin;Zachary White;Kareem Ahmed - 通讯作者:
Kareem Ahmed
Liquid fuel cloud detonation and droplet lifetime
- DOI:
10.1016/j.combustflame.2024.113786 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Taylor Brown;Rachel Hytovick;Anthony Morales;Joshua Berson;Sheikh Salauddin;Khaoula Chougag;Kareem Ahmed - 通讯作者:
Kareem Ahmed
Three-dimensional Numerical Simulations of a Liquid RP-2/O<math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si6.svg" class="math"><msub><mrow></mrow><mn>2</mn></msub></math> based Rotating Detonation Engine
- DOI:
10.1016/j.combustflame.2023.113097 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Supraj Prakash;Ral Bielawski;Venkat Raman;Kareem Ahmed;John Bennewitz - 通讯作者:
John Bennewitz
Three-dimensional Numerical Simulations of a Liquid RP-2/Omath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si6.svg" class="math"msubmrow/mrowmn2/mn/msub/math based Rotating Detonation Engine
基于RP - 2液体/氧气的旋转爆震发动机三维数值模拟
- DOI:
10.1016/j.combustflame.2023.113097 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:6.200
- 作者:
Supraj Prakash;Ral Bielawski;Venkat Raman;Kareem Ahmed;John Bennewitz - 通讯作者:
John Bennewitz
Kareem Ahmed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
- 批准号:11104247
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Towards understanding transition mechanism and application to heat transfer enhancement of elasto-inertia turbulence at low Reynolds number based on vortex modulation
基于涡旋调制的低雷诺数弹惯性湍流传热强化的理解和应用
- 批准号:
23K19093 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of mechanism for fluid–structure interaction on turbulence flow using high-performance computing system
流体机理研究
- 批准号:
22K03461 - 财政年份:2022
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanism and prediction of drag modulation in wall-bounded turbulence by additives
添加剂对壁面湍流阻力调制的机理和预测
- 批准号:
22K03917 - 财政年份:2022
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation mechanism of turbulence coherent structure by three-dimensional flow stability analysis applying nonlinear model
应用非线性模型进行三维流动稳定性分析的湍流相干结构生成机制
- 批准号:
19KK0373 - 财政年份:2022
- 资助金额:
$ 31.38万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Study on the generation mechanism of micro-scale turbulence in Earth's magnetosphere based on high-resolution plasma measurements and innovative analysis methods
基于高分辨率等离子体测量和创新分析方法研究地球磁层微尺度湍流产生机制
- 批准号:
21K03504 - 财政年份:2021
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Turbulence transport in a density stratified fluid generated by multiple scalars: mechanism of differential diffusion and quantitative evaluation
多标量产生的密度分层流体中的湍流传递:微分扩散机制和定量评估
- 批准号:
21K03875 - 财政年份:2021
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the formation mechanism of zonal flows in two-dimensional turbulence on a rotating sphere through comparison with those on a beta plane
旋转球面上二维湍流层流形成机制与β平面对比研究
- 批准号:
21K03352 - 财政年份:2021
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of mechanism of the interaction between turbulence and solidification structure and development of prediction methods for residual stress by DNS
阐明湍流与凝固结构相互作用的机制并开发 DNS 残余应力预测方法
- 批准号:
20K04261 - 财政年份:2020
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on formation and sustainment mechanism of turbulent structures by using integrated turbulence diagnostic system in torus
利用环面综合湍流诊断系统研究湍流结构的形成与维持机制
- 批准号:
20K03905 - 财政年份:2020
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of hierarchical structure and energy transfer mechanism in turbulence on the basis of multi-scale steady solution
基于多尺度稳态解阐明湍流层次结构和能量传递机制
- 批准号:
19K14889 - 财政年份:2019
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists