Collaborative Research: Spectral Functional Principal Components on Abelian Groups with Applications to Spatial Functional Data

合作研究:阿贝尔群的谱函数主成分及其在空间函数数据中的应用

基本信息

  • 批准号:
    1915277
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Massive data sets on gridded 2D and 3D domains have recently become available through computer climate model outputs, records from satellite remote sensing and brain scans, among others. These data sets have both temporal and spatial dimension. For example, a state of vegetation is observed on a grid covering an agricultural area at regular time intervals, every day or every week. Such data can be viewed as functions of time, one function per spatial grid unit. Their chief characteristic is the spatial dependence of curves observed at the grid nodes. There is an increasing need to develop statistical tools, which will allow researchers to extract useful information from such data. The PIs will develop such tools. The data and problems that motivate this research arise in several science fields, which have important impacts on society. For example, conclusions drawn from future climate models help the government and corporations plan for the allocation of various assets. Brain research on trauma experienced by military veterans and on Alzheimer's disease are recognized as important societal goals. The statistical research the PIs will conduct will provide useful quantitative tools to help scientists in these fields. Mathematical foundations of the new approach will be created, together with domain-specific approaches. The new methods will be implemented in R packages and made available to research community, government agencies and commercial enterprises. In the course of the proposed research, two Ph.D. students will be trained. The PIs will create a new framework for inference for functional data defined on domains with an additive group structure. The new dimension reduction approach will have characteristics of a multi-scale, data-driven representation, which takes into account the dependence of the functions defined on group elements, for example spatial grid nodes. The PIs will use methods of Fourier analysis on Abelian groups, spectral theory for functional data, invariance principles in Hilbert spaces, computationally efficient spatio-temporal spline representations, routines for downloading and manipulating massive data sets. The PIs will develop several inferential procedures, including bootstrap-based inference, tests for the spatial and distributional structure, and applications to the evaluation of the accuracy of computer climate models. The PIs will also develop corresponding computational techniques, which will lead to the computationally fast representation of various data structures of large to massive size.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近,通过计算机气候模型输出、卫星遥感记录和脑部扫描等,可以获得网格化二维和三维领域的大量数据集。这些数据集具有时间和空间维度。例如,每天或每周以固定的时间间隔在覆盖农业区域的网格上观察植被状态。 这样的数据可以被看作是时间的函数,每个空间网格单元一个函数。它们的主要特征是在网格节点处观察到的曲线的空间依赖性。越来越需要开发统计工具,使研究人员能够从这些数据中提取有用的信息。PI将开发此类工具。 激发这项研究的数据和问题出现在几个科学领域,对社会产生重要影响。例如,从未来气候模型中得出的结论有助于政府和企业规划各种资产的配置。对退伍军人经历的创伤和阿尔茨海默病的大脑研究被认为是重要的社会目标。PI将进行的统计研究将提供有用的定量工具,以帮助这些领域的科学家。新方法的数学基础将与特定领域的方法一起创建。新方法将在R包中实现,并提供给研究社区,政府机构和商业企业。在研究过程中,两位博士学生将接受培训。PI将创建一个新的框架,用于推理定义在具有添加剂组结构的域上的功能数据。新的降维方法将具有多尺度、数据驱动表示的特征,该特征考虑到了对组元素(例如空间网格节点)定义的函数的依赖性。PI将使用阿贝尔群的傅立叶分析方法,函数数据的谱理论,希尔伯特空间的不变性原理,计算效率高的时空样条表示,下载和操作大量数据集的例程。PI将开发几个推理程序,包括基于引导的推理,空间和分布结构的测试,以及对计算机气候模型准确性的评估应用。PI还将开发相应的计算技术,这将导致各种大到大规模数据结构的快速计算表示。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持影响审查标准。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexible-Elliptical Spatial Scan Method
柔性椭圆空间扫描方法
  • DOI:
    10.3390/math11173627
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Meysami, Mohammad;French, Joshua P.;Lipner, Ettie M.
  • 通讯作者:
    Lipner, Ettie M.
A sandwich smoother for spatio-temporal functional data
用于时空函数数据的三明治平滑器
  • DOI:
    10.1016/j.spasta.2020.100413
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    French, Joshua P.;Kokoszka, Piotr S.
  • 通讯作者:
    Kokoszka, Piotr S.
Detecting clusters of high nontuberculous mycobacteria infection risk for persons with cystic fibrosis – An analysis of U.S. counties
检测囊性纤维化患者非结核分枝杆菌感染高风险群 — 对美国各县的分析
  • DOI:
    10.1016/j.tube.2022.102296
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Mercaldo, Rachel A.;Marshall, Julia E.;Prevots, D. Rebecca;Lipner, Ettie M.;French, Joshua P.
  • 通讯作者:
    French, Joshua P.
Nontuberculous Mycobacterial Disease and Molybdenum in Colorado Watersheds
Estimating the optimal population upper bound for scan methods in retrospective disease surveillance
  • DOI:
    10.1002/bimj.202000273
  • 发表时间:
    2021-07-17
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Meysami, Mohammad;French, Joshua P.;Lipner, Ettie M.
  • 通讯作者:
    Lipner, Ettie M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua French其他文献

Accurate modeling of ejection fraction and stroke volume with mobile phone auscultation: A prospective case control study of convenience samples at two different clinical sites (Preprint)
通过手机听诊对射血分数和每搏输出量进行准确建模:对两个不同临床地点的便利样本进行的前瞻性病例对照研究(预印本)
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Huecker;Craig Schutzman;Joshua French;Karim El;S. Ghafghazi;Ravi Desai;Daniel Frick;J. Shreffler;J. Thomas
  • 通讯作者:
    J. Thomas

Joshua French的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua French', 18)}}的其他基金

FRG: Collaborative Proposal: Extreme Theory Value Theory for Spatially Indexed Functional Data
FRG:协作提案:空间索引函数数据的极端理论价值理论
  • 批准号:
    1463642
  • 财政年份:
    2015
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229471
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229473
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
  • 批准号:
    2313234
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
  • 批准号:
    2313233
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
  • 批准号:
    2246547
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
  • 批准号:
    2246548
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229472
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
  • 批准号:
    2212370
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了