Spectral Methods for High Dimensional Tensor Data
高维张量数据的谱方法
基本信息
- 批准号:1915978
- 负责人:
- 金额:$ 17.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent developments have made large-scale multidimensional data readily available in science and engineering applications. Examples include multi-tissue, multi-individual gene expression studies, in which gene expression profiles are collected from different individuals' tissues. Another example is the DBLP database, which is organized into a three-way tensor of author-by-word-by-venue, and each entry indicates the co-occurrence of the triplets. Despite the popularity of tensor data, there are many challenges to using statistical methods for analyzing higher-order tensors. Indeed, the classical spectral theory for matrices is not directly applicable to tensors, and the computational problem becomes NP-hard in the worst case. Therefore, analyzing tensor data with increasing dimensionality and ever-growing complexity requires the development of novel statistical methods, which is the aim of this project.In this project, the PI plans to develop a framework of statistical models, scalable algorithms, and relevant theories to analyze tensor-valued data. This will allow researchers to examine complex interactions among tensor entries and between multiple tensors, thereby providing solutions to questions that cannot be addressed by traditional matrix analysis. The project will focus on three major areas: (i) spectral theory for specially-structured or random tensors; (ii) estimation of low-rank tensors from non-Gaussian observations; and (iii) joint estimation of mean and covariance for tensor-valued data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的发展使大规模的多维数据在科学和工程应用中变得容易获得。例子包括多组织、多个体基因表达研究,其中从不同个体的组织收集基因表达谱。另一个例子是DBLP数据库,它被组织成一个作者-词-地点的三向张量,每个条目都表示三元组的同现。尽管张量数据很受欢迎,但使用统计方法来分析高阶张量仍然存在许多挑战。实际上,经典的矩阵谱理论不能直接应用于张量,在最坏的情况下,计算问题变成了NP-困难。因此,分析维数和复杂度不断增加的张量数据需要开发新的统计方法,这是本项目的目标。在本项目中,PI计划开发一个统计模型框架,可扩展算法和相关理论来分析张量值数据。这将使研究人员能够检查张量条目之间和多个张量之间的复杂相互作用,从而为传统矩阵分析无法解决的问题提供解决方案。该项目将集中在三个主要领域:(i)特殊结构或随机张量的谱理论;(ii)从非高斯观测估计低秩张量;(iii)张量值数据的均值和协方差的联合估计。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tensor denoising and completion based on ordinal observation
基于序数观察的张量去噪和补全
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lee, Chanwoo;Wang, Miaoyan
- 通讯作者:Wang, Miaoyan
Multiway clustering via tensor block models
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Yuchen Zeng;Miaoyan Wang
- 通讯作者:Yuchen Zeng;Miaoyan Wang
Learning Multiple Networks via Supervised Tensor Decomposition
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jiaxin Hu;Chanwoo Lee;Miaoyan Wang
- 通讯作者:Jiaxin Hu;Chanwoo Lee;Miaoyan Wang
Learning from Binary Multiway Data: Probabilistic Tensor Decomposition and its Statistical Optimality.
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Wang M;Li L
- 通讯作者:Li L
Beyond the Signs: Nonparametric Tensor Completion via Sign Series
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Chanwoo Lee;Miaoyan Wang
- 通讯作者:Chanwoo Lee;Miaoyan Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miaoyan Wang其他文献
A Brief Review of Lizard Inclusions in Amber
琥珀中蜥蜴内含物的简要回顾
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Miaoyan Wang;L. Xing - 通讯作者:
L. Xing
Clock circadian regulator (CLOCK) gene network expression patterns in bovine adipose, liver, and mammary gland at 3 time points during the transition from pregnancy into lactation.
从妊娠到哺乳期过渡期间 3 个时间点的牛脂肪、肝脏和乳腺中的时钟昼夜节律调节器 (CLOCK) 基因网络表达模式。
- DOI:
10.3168/jds.2015-9430 - 发表时间:
2015 - 期刊:
- 影响因子:3.5
- 作者:
Miaoyan Wang;Miaoyan Wang;Z. Zhou;M. J. Khan;Jian Gao;J. J. Loor - 通讯作者:
J. J. Loor
Recent developments in statistical methods for GWAS and high-throughput sequencing association studies of complex traits
GWAS统计方法和复杂性状高通量测序关联研究的最新进展
- DOI:
10.1080/24709360.2018.1529346 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Duo Jiang;Miaoyan Wang - 通讯作者:
Miaoyan Wang
Plasmonics meets super-resolution microscopy in biology
- DOI:
10.1016/j.micron.2020.102916 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Miaoyan Wang;Meiqi Li;Shan Jiang;Juntao Gao;Peng Xi - 通讯作者:
Peng Xi
Miaoyan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miaoyan Wang', 18)}}的其他基金
CAREER: High-dimensional Tensor Learning: The Good, the Bad, and the Pragmatic
职业:高维张量学习:好的、坏的和实用的
- 批准号:
2141865 - 财政年份:2022
- 资助金额:
$ 17.93万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 17.93万 - 项目类别:
Continuing Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 17.93万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 17.93万 - 项目类别:
Continuing Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 17.93万 - 项目类别:
Standard Grant
CAREER: Practical algorithms and high dimensional statistical methods for multimodal haplotype modelling
职业:多模态单倍型建模的实用算法和高维统计方法
- 批准号:
2239870 - 财政年份:2023
- 资助金额:
$ 17.93万 - 项目类别:
Standard Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 17.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
- 批准号:
2246796 - 财政年份:2023
- 资助金额:
$ 17.93万 - 项目类别:
Standard Grant
Enhancement of low-dimensional embedding methods for complex structures in spatiotemporal data with their applications
时空数据中复杂结构的低维嵌入方法及其应用的增强
- 批准号:
23K11018 - 财政年份:2023
- 资助金额:
$ 17.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 17.93万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 17.93万 - 项目类别:
Continuing Grant














{{item.name}}会员




