Spatial-Temporal Modeling and Computation for Physical Processes and Numerical Simulations

物理过程和数值模拟的时空建模和计算

基本信息

  • 批准号:
    1916208
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Every minute of every day, a swarm of satellites captures images of the scenes below, and supercomputers churn out simulations of future weather and climate, accumulating a mountain of raw information about the Earth and its atmosphere. Since a significant amount of public funding has been devoted to the collection and production of this data, it is imperative that statistical tools be up to the task of analyzing it. This project aims to sort through this information, accurately filling in gaps in the raw data, inferring meaningful quantities--such as changing wind patterns--from sequences of images, and refining our understanding of the Earth as an interconnected system through the analysis of numerical computer simulations. Statistical techniques developed during this project will be made accessible to the broader community by public dissemination of software. Students and emerging researchers will be trained to use the new methods and will be empowered with specific knowledge and independent critical thinking skills to venture out and make their own impacts.The project outlines advancements for three crucial tasks in the geoscientific data analysis pipeline. (1) Observations from ground monitors and polar orbiting satellites often have gaps in space and time that must be interpolated. Thus, new Gaussian process approximations are proposed that significantly reduce computational effort while improving approximations, allowing for fast and accurate interpolations. (2) Geostationary satellite sensors afford the opportunity for fine scale, continual monitoring of the atmosphere. This proposal outlines a framework for using these data--which consist of a temporal sequence of images--for the purpose of inferring upper air wind fields. (3) The pace of supercomputing has continued to increase our ability to produce high-resolution numerical simulations, which requires new computational tools for analyzing the output. A technique is proposed for local estimation that results in a globally valid statistical model, a critical feature that enables numerical model emulation and data compression via statistical models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每一天的每一分钟,一群卫星都会捕捉到下面场景的图像,超级计算机会大量模拟未来的天气和气候,积累大量关于地球及其大气层的原始信息。由于大量的公共资金已经投入到这些数据的收集和制作中,统计工具必须能够完成分析任务。该项目旨在对这些信息进行分类,准确填补原始数据中的空白,从图像序列中推断有意义的数量-例如变化的风模式,并通过数值计算机模拟分析来完善我们对地球作为一个相互关联的系统的理解。在本项目期间开发的统计技术将通过软件的公开传播向更广泛的社区提供。学生和新兴的研究人员将接受培训,使用新的方法,并将被赋予特定的知识和独立的批判性思维技能,冒险出去,使自己的影响。该项目概述了在地球科学数据分析管道的三个关键任务的进展。(1)来自地面监测器和极地轨道卫星的观测结果往往在空间和时间上有差距,必须加以插值。因此,提出了新的高斯过程近似,其在改进近似的同时显著减少计算工作量,从而允许快速和准确的插值。(2)地球静止卫星传感器提供了对大气进行精细、连续监测的机会。该提案概述了使用这些数据的框架-这些数据由图像的时间序列组成-以推断高空风场。(3)超级计算的步伐继续提高我们产生高分辨率数值模拟的能力,这需要新的计算工具来分析输出。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial Shrinkage Via the Product Independent Gaussian Process Prior
  • DOI:
    10.1080/10618600.2021.1923512
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Arkaprava Roy;B. Reich;J. Guinness;R. Shinohara;A. Staicu
  • 通讯作者:
    Arkaprava Roy;B. Reich;J. Guinness;R. Shinohara;A. Staicu
Log-Gaussian Cox process modeling of large spatial lightning data using spectral and Laplace approximations
使用谱和拉普拉斯近似对大型空间闪电数据进行对数高斯 Cox 过程建模
  • DOI:
    10.1214/22-aoas1708
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gelsinger, Megan L.;Griffin, Maryclare;Matteson, David;Guinness, Joseph
  • 通讯作者:
    Guinness, Joseph
Partition-Based Nonstationary Covariance Estimation Using the Stochastic Score Approximation
使用随机分数近似的基于分区的非平稳协方差估计
Geostatistical modeling of positive-definite matrices: An application to diffusion tensor imaging.
  • DOI:
    10.1111/biom.13445
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
  • 通讯作者:
Spatial statistical modeling of arsenic accumulation in microsites of diverse soils
  • DOI:
    10.1016/j.geoderma.2022.115697
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Aakriti Sharma;J. Guinness;Amanda Muyskens;M. Polizzotto;M. Fuentes;D. Hesterberg
  • 通讯作者:
    Aakriti Sharma;J. Guinness;Amanda Muyskens;M. Polizzotto;M. Fuentes;D. Hesterberg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Guinness其他文献

Sample Size for Estimating Disease Prevalence in Free-Ranging Wildlife Populations: A Bayesian Modeling Approach
  • DOI:
    10.1007/s13253-023-00578-7
  • 发表时间:
    2023-11-13
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    James G. Booth;Brenda J. Hanley;Florian H. Hodel;Christopher S. Jennelle;Joseph Guinness;Cara E. Them;Corey I. Mitchell;Md Sohel Ahmed;Krysten L. Schuler
  • 通讯作者:
    Krysten L. Schuler
Application of Mechanistic Models and the Gaussian Process Model to Predict Bacterial Growth on Baby Spinach During Refrigerated Storage
  • DOI:
    10.1016/j.jfp.2024.100417
  • 发表时间:
    2025-01-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sriya Sunil;Sarah I. Murphy;Ruixi Chen;Wei Chen;Joseph Guinness;Li-Qun Zhang;Renata Ivanek;Martin Wiedmann
  • 通讯作者:
    Martin Wiedmann

Joseph Guinness的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Guinness', 18)}}的其他基金

Collaborative Research: Scalable Gaussian-Process Methods for Spatial Statistics and Machine Learning
合作研究:空间统计和机器学习的可扩展高斯过程方法
  • 批准号:
    1953088
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Estimation and Inference for Massive Multivariate Spatial Data
海量多元空间数据的估计和推理
  • 批准号:
    1844420
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Estimation and Inference for Massive Multivariate Spatial Data
海量多元空间数据的估计和推理
  • 批准号:
    1613219
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似海外基金

ATD: Statistical Modeling of Spatial Temporal Human Mobility Flows from Aggregated Mobile Phone Data
ATD:根据聚合的移动电话数据对时空人类移动流进行统计建模
  • 批准号:
    2220231
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Elucidating spatial-temporal tritium-tracer dynamics in Fukushima headwater c atchments by field observation and modeling
通过现场观测和建模阐明福岛源头流域的时空氚示踪动态
  • 批准号:
    23K11446
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creating the Gold Standard Air Quality and Exposure Monitoring Tool for Train Stations and Train-Care Depots, using High Spatial & Temporal Resolution Data, Real-time Automated Outputs, Digital Twins and Dispersion-Modeling using Advanced Ray-Tracing
使用 High Spatial 为火车站和列车维修站创建黄金标准空气质量和暴露监测工具
  • 批准号:
    10002510
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Small Business Research Initiative
Analysis and modeling of spatial and temporal non-local properties of turbulent eddy diffusivity approximation
湍流涡扩散率近似的时空非局域特性分析与建模
  • 批准号:
    20K04282
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Post-wildfire Ground Deformation over Permafrost Areas: Detection and Modeling of Spatial-Temporal Changes
多年冻土地区野火后地面变形:时空变化的检测和建模
  • 批准号:
    19K03982
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Modeling the Spatial and Temporal Dynamics of Vector-borne Diseases in Florida: The Case of Zika Outbreak in 2016
合作研究:佛罗里达州媒介传播疾病的时空动态建模:以 2016 年寨卡病毒爆发为例
  • 批准号:
    1853562
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling the Spatial and Temporal Dynamics of Vector-borne Diseases in Florida: The Case of Zika Outbreak in 2016
合作研究:佛罗里达州媒介传播疾病的时空动态建模:以 2016 年寨卡病毒爆发为例
  • 批准号:
    1853622
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
  • 批准号:
    1916349
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Dimensional Spatial-Temporal Modeling and Inference for Large Multi-Source Environmental Monitoring Systems
合作研究:大型多源环境监测系统的高维时空建模与推理
  • 批准号:
    1916395
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Joint Modeling of Multiple Spatial Temporal Outcomes
多个时空结果的联合建模
  • 批准号:
    436102-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了