Collaborative Research: A Flexible Framework for Radiation Parameterizations Traceable to Benchmarks

协作研究:可追溯至基准的灵活辐射参数化框架

基本信息

  • 批准号:
    1916927
  • 负责人:
  • 金额:
    $ 47.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Earth's climate is set by the balance between the flow of radiant energy into the atmosphere, largely as visible sunlight, and the return flow of infrared radiation to space. Simulations of earth's climate thus require an approximate representation of these flows which is fast enough to be practical and accurate enough to capture phenomena of interest, such as the warming effect of carbon dioxide (CO2). The development of such representations, referred to as radiative transfer parameterizations or more simply as radiation schemes, is challenging given that the transparency of the atmosphere to infrared radiation can vary abruptly from one wavelength to another. Practical radiation schemes exist, but they are challenging to develop and update and it is not generally feasible to tailor them to specific applications. For example the version of the Community Earth System Model (CESM) available in 2020 uses a radiation scheme published in 2008, despite the availability of new spectroscopic observations, and the same version is used for full-complexity present-day simulations and for idealized simulations that would benefit from a faster but less accurate version.This award supports the creation of a toolkit that would greatly enhance the ability of climate researchers to create radiative transfer parameterizations suitable for their needs. The user would supply a set of benchmark atmospheres, specified as profiles of temperature and composition (water vapor and CO2, for instance), that cover the range of conditions anticipated in the particular application, and the toolbox would use a sophisticated line-by-line radiative transfer model and a database of up-to-date spectroscopic observations to create parameterization options with varying degrees of accuracy and computational cost. Users would then be able to choose the best trade-off between cost and accuracy for their application. In addition, the project creates parameterizations for specific research goals: one for simulations of paleoclimates with high CO2 concentrations and two for studies of the interaction between radiation and convective clouds (one emphasizing speed, which can be invoked more frequently, and one emphasizing accuracy). A third, developed with collaborators at the Geophysical Fluid Dynamics Laboratory (funded through other sources), is optimized for simulations of present-day climate and prediction of climate fluctuations including El Nino events.The project also includes work on alternative methods for parameterizing radiative transfer, one of which is a discrete frequency approximation, in which an optimally chosen set of strictly monochromatic spectral lines is used instead of a representation in terms of frequency bands. The lines are determined from the spectral database using a fast optimization technique such as simulated annealing. The second is a machine learning approach designed to emulate the underlying exact solutions to the radiative transfer equations.The work has broader impacts through the development of a key piece of infrastructure for weather and climate models. The work will thus have benefit for the worldwide community that relies on these models as tools for basic science research. Workshops and tutorials are supported to facilitate community engagement. The work also enhances the value of model-based predictions and projections as guidance for decision makers concerned with climate variability and change. The project supports a postdoc and a graduate student, thus providing for the future workforce in climate model development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球的气候是由流入大气层的辐射能(主要是可见光)和返回太空的红外辐射之间的平衡决定的。因此,对地球气候的模拟需要对这些流动的近似表示,该近似表示足够快以实用并且足够准确以捕获感兴趣的现象,例如二氧化碳(CO2)的变暖效应。 这种表示的发展,称为辐射传输参数化或更简单地称为辐射方案,是具有挑战性的,因为大气对红外辐射的透明度可以从一个波长突然变化到另一个波长。实际的辐射计划是存在的,但它们的发展和更新是具有挑战性的,而且通常不可行,使其适合具体的应用。例如,2020年可用的共同体地球系统模型(CESM)版本使用了2008年发布的辐射方案,尽管有新的光谱观测,同样的版本也用于全复杂性呈现天的模拟和理想化的模拟,将受益于更快,但不太准确的版本。这个奖项支持创建一个工具包,将大大提高能力,气候研究人员需要创建适合他们需要的辐射传输参数化。 用户将提供一套基准大气,具体说明为温度和成分(例如水蒸气和二氧化碳)的分布图,涵盖特定应用中预期的各种条件,工具箱将使用复杂的逐线辐射传输模型和最新光谱观测数据库,以创建具有不同精度和计算成本的参数化选项。 这样,用户就能够在成本和准确性之间为他们的应用选择最佳的折衷方案。 此外,该项目还为特定的研究目标创建了参数化:一个用于模拟高CO2浓度的古气候,两个用于研究辐射和对流云之间的相互作用(一个强调速度,可以更频繁地调用,另一个强调准确性)。 第三种是与地球物理流体动力学实验室的合作者共同开发的(由其他来源供资),该项目最适合于模拟当今气候和预测包括厄尔尼诺现象在内的气候波动。该项目还包括关于辐射转移参数化的替代方法的工作,其中一种方法是离散频率近似法,其中使用一组最佳选择的严格单色谱线来代替根据频带的表示。 使用诸如模拟退火的快速优化技术从光谱数据库确定谱线。 第二个是机器学习方法,旨在模拟辐射传输方程的基本精确解。这项工作通过开发天气和气候模型的关键基础设施产生了更广泛的影响。 因此,这项工作将有益于依赖这些模型作为基础科学研究工具的国际社会。 支持研讨会和教程,以促进社区参与。 这项工作还提高了基于模型的预测和预测作为对关注气候变异性和变化的决策者的指导的价值。该项目支持一名博士后和一名研究生,从而为未来的气候模型开发提供人才。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The inclusion of the MT_CKD water vapor continuum model in the HITRAN molecular spectroscopic database
HITRAN 分子光谱数据库中包含 MT_CKD 水蒸气连续体模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eli Mlawer其他文献

Eli Mlawer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eli Mlawer', 18)}}的其他基金

Collaborative Research: Systematic Evaluation and Further Improvement of Present Broadband Radiative Transfer Modeling Capabilities
合作研究:现有宽带辐射传输建模能力的系统评估和进一步改进
  • 批准号:
    1632210
  • 财政年份:
    2016
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
  • 批准号:
    2313768
  • 财政年份:
    2023
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Aeolian Grain Entrainment Over Flexible Vegetation Canopies: Theoretical Models, Laboratory Experiments and Fieldwork
合作研究:灵活植被冠层的风沙颗粒夹带:理论模型、实验室实验和实地考察
  • 批准号:
    2327916
  • 财政年份:
    2023
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enhancing Radar Meteorology Instruction with an Open, Flexible, Online Course
合作研究:通过开放、灵活的在线课程加强雷达气象学教学
  • 批准号:
    2303654
  • 财政年份:
    2023
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
  • 批准号:
    2328183
  • 财政年份:
    2023
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Costs and Trade-offs of Phenotypically Flexible Responses to Winter Temperature Variability in Birds
合作研究:鸟类对冬季温度变化的表型灵活反应的成本和权衡
  • 批准号:
    2224556
  • 财政年份:
    2023
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
  • 批准号:
    2328182
  • 财政年份:
    2023
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhancing Radar Meteorology Instruction with an Open, Flexible, Online Course
合作研究:通过开放、灵活的在线课程加强雷达气象学教学
  • 批准号:
    2303653
  • 财政年份:
    2023
  • 资助金额:
    $ 47.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了