EAGER: Numerical two-dimensional fluid simulations and finite element analysis to model an adaptive and flexible microplasma discharge system.

EAGER:数值二维流体模拟和有限元分析,用于对自适应且灵活的微等离子体放电系统进行建模。

基本信息

  • 批准号:
    1917144
  • 负责人:
  • 金额:
    $ 7.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-15 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) grant will explore the effects of varying ambient conditions on microplasma discharge for accelerating the pace of microplasma discharge device-based system development. Microplasma discharge devices, which are based on non-thermal or cold plasmas, have been receiving growing interest for various applications in the food, biomedical and health care industries. The performance of the devices is dependent on a stable and uniform microplasma discharge. To maintain a uniform distribution of microplasma discharge, the devices are often operated with high input voltages along with the use of inert gases such as argon, neon, helium, xenon and nitrogen. However, the use of high voltages and inert gases are a safety hazard and prohibits the development of portable microplasma discharge devices. To overcome these limitations, the microplasma discharge devices are operated in controlled environments and specialized chambers, under stable atmospheric conditions, thus making the systems complex, bulky, non-portable and expensive. Even though novel microplasma discharge devices that operate in atmospheric air can be developed to address these drawbacks, the devices are exposed to varying ambient conditions including dynamic temperature, pressure and humidity changes. This further multiplies the challenges associated with the development of optimum microplasma discharge devices because of the changes in electron density, electron mobility and electron temperature due to the varying ambient conditions. The EAGER grant is used for developing a deep understanding of the microplasma discharge dynamics such as electron density, electron mobility and electron temperature under varying ambient conditions. The research has the potential to advance the development of adaptive control systems for microplasma discharge devices. This could have a profound technological and economic impact on the emerging flexible hybrid electronics (FHE) and wearable biomedical industries. The results obtained from this project will be disseminated through research publications in peer reviewed journals as well as in presentations at regional, national and international conferences.The research under this EAGER grant aims to radically reduce the risk associated in developing novel microplasma discharge devices and study the microplasma discharge performance that has not been investigated before. Numerical two-dimensional fluid simulations and finite element analysis will be performed to model the microplasma dynamics of different microplasma discharge device configurations with varying electrode designs, electrode gaps and overall device dimensions, at varying ambient conditions. The results will enable optimization of the microplasma discharge device parameters for consistent electron density and electron mobility. This will facilitate uniform voltage distribution across the surface of the electrodes resulting in uniform generation of microplasma discharge. The dielectric barrier discharge and breakdown voltage analysis will be performed on the optimized electrode configuration to understand the optimum breakdown voltage required for microplasma discharge. Finite element modelling and simulations of the microplasma discharge dynamics such as electron density, electron mobility and electron temperature will be completed for varying ambient temperature, pressure and humidity. The results will be utilized to generate a detailed database that can be used for designing and fabricating novel microplasma discharge devices which can be integrated with adaptive control systems for the development of novel microplasma discharge device based systems. The fundamental breakthroughs from this research will eliminate the risks associated with optimizing microplasma discharge devices for applications such as sterilization, wound disinfection and surface treatments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EARLY概念探索性研究补助金(EAGER)将探索不同环境条件对微等离子体放电的影响,以加快基于微等离子体放电设备的系统开发步伐。基于非热或冷等离子体的微等离子体放电装置在食品、生物医学和医疗保健行业的各种应用中受到越来越多的关注。器件的性能取决于稳定均匀的微等离子体放电。为了保持微等离子体放电的均匀分布,装置通常以高输入电压沿着使用惰性气体(例如氩、氖、氦、氙和氮)来操作。然而,高电压和惰性气体的使用是安全隐患,并且禁止便携式微等离子体放电装置的发展。为了克服这些限制,微等离子体放电装置在稳定的大气条件下在受控的环境和专门的腔室中操作,从而使得系统复杂、庞大、非便携且昂贵。尽管可以开发在大气中操作的新颖微等离子体放电装置来解决这些缺点,但是装置暴露于变化的环境条件,包括动态温度、压力和湿度变化。这进一步增加了与最佳微等离子体放电装置的开发相关的挑战,因为电子密度、电子迁移率和电子温度由于变化的环境条件而发生变化。EAGER赠款用于深入了解微等离子体放电动力学,如电子密度,电子迁移率和电子温度在不同的环境条件下。该研究有可能推进微等离子体放电装置的自适应控制系统的发展。这可能会对新兴的柔性混合电子产品(FHE)和可穿戴生物医学行业产生深远的技术和经济影响。该项目的研究成果将通过在同行评审期刊上发表的研究论文以及在地区、国家和国际会议上的演讲进行传播。EAGER基金资助的研究旨在从根本上降低开发新型微等离子体放电器件的相关风险,并研究以前未研究过的微等离子体放电性能。将进行数值二维流体模拟和有限元分析,以模拟不同微等离子体放电装置配置的微等离子体动力学,这些微等离子体放电装置配置具有不同的电极设计、电极间隙和整体装置尺寸,在不同的环境条件下。结果将使微等离子体放电装置参数的优化一致的电子密度和电子迁移率。这将促进跨电极表面的均匀电压分布,从而导致微等离子体放电的均匀产生。将对优化的电极配置进行介质阻挡放电和击穿电压分析,以了解微等离子体放电所需的最佳击穿电压。微等离子体放电动力学,如电子密度,电子迁移率和电子温度的有限元建模和模拟将完成不同的环境温度,压力和湿度。结果将被用来生成一个详细的数据库,可用于设计和制造新的微等离子体放电装置,可集成与自适应控制系统的发展,新的微等离子体放电装置为基础的系统。这项研究的根本性突破将消除与优化微等离子体放电设备相关的风险,用于灭菌,伤口消毒和表面处理等应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2-D Finite-Element Modeling of Surface Dielectric Barrier Plasma Discharge Devices to Understand the Influence of Design Parameters on Sterilization Applications
表面介质阻挡等离子体放电装置的二维有限元建模,以了解设计参数对灭菌应用的影响
  • DOI:
    10.1109/tps.2022.3156031
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Bose, Arnesh K.;Maddipatla, Dinesh;Atashbar, Massood Z.
  • 通讯作者:
    Atashbar, Massood Z.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Massood Atashbar其他文献

Enabling fast-charging of lithium-ion batteries through printed electrodes
通过印刷电极实现锂离子电池的快速充电
  • DOI:
    10.1016/j.electacta.2025.145638
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Guanyi Wang;Jie Xiong;Bingyao Zhou;Valliammai Palaniappan;Himanaga Emani;Kevin Mathew;Emmanuel Kornyo;Zachary Tay;Tony Joseph Hanson;Dinesh Maddipatla;Guoxin Zhang;Massood Atashbar;Wenquan Lu;Qingliu Wu
  • 通讯作者:
    Qingliu Wu

Massood Atashbar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Massood Atashbar', 18)}}的其他基金

PFI:AIR - TT: Smart Helmet Impact Sensing System
PFI:AIR - TT:智能头盔冲击感应系统
  • 批准号:
    1701157
  • 财政年份:
    2017
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Standard Grant
I-Corps: Development of Printed and Flexible Impact Sensing Platform
I-Corps:开发印刷和灵活的冲击传感平台
  • 批准号:
    1644613
  • 财政年份:
    2016
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Standard Grant
Integrated Sensing: Integrated Smart Wireless SAW Sensors and Systems
集成传感:集成智能无线 SAW 传感器和系统
  • 批准号:
    0225427
  • 财政年份:
    2002
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Standard Grant

相似海外基金

Two-phase flow numerical model development based on experimental characterization.
基于实验表征的两相流数值模型开发。
  • 批准号:
    RGPIN-2020-06629
  • 财政年份:
    2022
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Advanced Numerical Models for Two-Phase Heat and Mass Transfer Processes in Energy Systems
能源系统中两相传热传质过程的先进数值模型的开发
  • 批准号:
    RGPIN-2018-05354
  • 财政年份:
    2022
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Grants Program - Individual
Two-phase flow numerical model development based on experimental characterization.
基于实验表征的两相流数值模型开发。
  • 批准号:
    RGPIN-2020-06629
  • 财政年份:
    2021
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Studies of Two-phase Flows and Heat Transfer
两相流和传热的数值研究
  • 批准号:
    RGPIN-2017-04757
  • 财政年份:
    2021
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Advanced Numerical Models for Two-Phase Heat and Mass Transfer Processes in Energy Systems
能源系统中两相传热传质过程的先进数值模型的开发
  • 批准号:
    RGPIN-2018-05354
  • 财政年份:
    2021
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Advanced Numerical Models for Two-Phase Heat and Mass Transfer Processes in Energy Systems
能源系统中两相传热传质过程的先进数值模型的开发
  • 批准号:
    RGPIN-2018-05354
  • 财政年份:
    2020
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Grants Program - Individual
CDS&E: Numerical Investigation of Two-Particle Response Functions of Correlated Materials
CDS
  • 批准号:
    2001465
  • 财政年份:
    2020
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Continuing Grant
Two-phase flow numerical model development based on experimental characterization.
基于实验表征的两相流数值模型开发。
  • 批准号:
    RGPIN-2020-06629
  • 财政年份:
    2020
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Studies of Two-phase Flows and Heat Transfer
两相流和传热的数值研究
  • 批准号:
    RGPIN-2017-04757
  • 财政年份:
    2020
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Grants Program - Individual
Two-phase flow numerical model development based on experimental characterization.
基于实验表征的两相流数值模型开发。
  • 批准号:
    DGECR-2020-00509
  • 财政年份:
    2020
  • 资助金额:
    $ 7.47万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了