Elucidating the Physics of Flexoelectricity Through First-Principles Calculations of Complex Materials
通过复杂材料的第一性原理计算阐明挠曲电的物理原理
基本信息
- 批准号:1918455
- 负责人:
- 金额:$ 33.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports computational and theoretical research, and education on flexoelectricity.If a strain gradient is applied to a piece of an electrically insulating material, for example by bending it, a voltage will be created across the material. This effect, known as flexoelectricity, has attracted attention because of the possibility for technological applications such as actuators, deflection sensors, and energy harvesters. Also, flexoelectricity is important since modern nanoscale electronic devices may contain large unintentional strain gradients, and thus flexoelectricity may play a crucial role in their properties. A pivotal missing ingredient in developing a quantitative understanding of flexoelectricity has been the lack of an efficient and accurate computational methodology to predict the flexoelectric response of a material. In this project, the PI will build on predictive methodology he has developed with collaborators and apply it to explore and characterize the flexoelectric response in materials more complex than could be theoretically investigated before. The goal of this research is to better understand what materials properties lead to an especially large flexoelectric response, which can be utilized for technological applications. This will also help identify materials with a suppressed flexoelectric response, which will be useful in cases where the effects of unintentional strain gradients need to be mitigated. The research activities in this project serve as an ideal platform for the education and mentoring of graduate and undergraduate students in diverse aspects of condensed matter physics, materials science, and computational science. TECHNICAL SUMMARYThis award supports computational and theoretical research, and education on flexoelectricity.The flexoelectric effect, where electrical polarization is induced by a strain gradient, is universal in all insulators. As devices shrink to the micro and nanoscale, large strain gradients can occur, and therefore the flexoelectric effect may play a significant role in their properties. Also, flexoelectricity can be exploited for novel paradigms of electromechanical manipulation of materials, such as the development of piezoelectric "metamaterials" constructed from nonpiezoelectric constituents, or mechanical switching of ferroelectric polarization. In this work, the PI will explore and elucidate the physics of flexoelectricity in complex materials, utilizing recently developed density functional perturbation theory methodology for accurately and efficiently calculating flexoelectric coefficients. The PI will investigate the flexoelectric response in two materials systems with the goal of addressing significant open questions relating to how flexoelectricity is generally manifested in materials. The PI will focus on two-dimensional, van der Waals bonded materials including, boron nitride and the transition-metal dichalcogenides, and "distorted" perovskite oxides with lower symmetry than the cubic parent structure. The PI will systematically explore how symmetry, mechanical, and dielectric properties influence the flexoelectric response, and how this response can be measured or manipulated by forming heterostructures or superlattices, or modifying surface properties. The materials study performed in this work, will enable the identification of specific materials and material systems that have large flexoelectric responses which may be useful for applications, as well as those with small responses, which are necessary in applications where gradients are present unintentionally and flexoelectricity must be mitigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持计算和理论研究以及挠曲电教育。如果将应变梯度施加到一块电绝缘材料上,例如通过弯曲它,将在材料上产生电压。这种被称为挠曲电的效应引起了人们的关注,因为它可能用于致动器、偏转传感器和能量采集器等技术应用。此外,挠曲电性是重要的,因为现代纳米级电子器件可能包含大的无意应变梯度,因此挠曲电性可能在它们的性质中起关键作用。在发展对挠曲电的定量理解中,一个关键的缺失因素是缺乏有效和准确的计算方法来预测材料的挠曲电响应。在这个项目中,PI将建立在他与合作者开发的预测方法的基础上,并将其应用于探索和表征比以前理论上研究的更复杂的材料中的挠曲电响应。这项研究的目标是更好地了解什么材料特性导致特别大的挠曲电响应,这可以用于技术应用。这也将有助于识别具有抑制挠曲电响应的材料,这在需要减轻无意应变梯度的影响的情况下将是有用的。该项目的研究活动为凝聚态物理、材料科学和计算科学的各个方面的研究生和本科生的教育和指导提供了理想的平台。技术总结该奖项支持计算和理论研究以及挠曲电的教育。挠曲电效应是由应变梯度引起的电极化,在所有绝缘体中是普遍存在的。 随着器件缩小到微米和纳米级,可能会出现大的应变梯度,因此挠曲电效应可能在其性能中发挥重要作用。此外,挠曲电可以用于材料的机电操纵的新范例,例如由非压电成分构造的压电“超材料”的开发,或铁电极化的机械切换。 在这项工作中,PI将探索和阐明复杂材料中的挠曲电物理学,利用最近开发的密度泛函微扰理论方法准确有效地计算挠曲电系数。PI将研究两种材料系统中的挠曲电响应,目的是解决与挠曲电通常如何在材料中表现有关的重大开放问题。 PI将专注于二维,货车德瓦尔斯键合材料,包括氮化硼和过渡金属二硫属化物,和“扭曲”钙钛矿氧化物与较低的对称性比立方母体结构。PI将系统地探索对称性,机械和介电特性如何影响挠曲电响应,以及如何通过形成异质结构或超晶格或修改表面特性来测量或操纵这种响应。在这项工作中进行的材料研究,将使特定的材料和材料系统,具有大的挠曲电响应,这可能是有用的应用程序,以及那些小的响应,这是必要的梯度存在无意中和挠曲电必须减轻的应用。这一奖项反映了NSF的法定使命,并已被认为是值得支持,通过评估使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-range quadrupole electron-phonon interaction from first principles
- DOI:10.1103/physrevb.102.125203
- 发表时间:2020-03
- 期刊:
- 影响因子:3.7
- 作者:Jinsoo Park;Jin-Jian Zhou;V. Jhalani;C. Dreyer;M. Bernardi
- 通讯作者:Jinsoo Park;Jin-Jian Zhou;V. Jhalani;C. Dreyer;M. Bernardi
Correlation-induced octahedral rotations in SrMoO3
- DOI:10.1103/physrevb.104.035102
- 发表时间:2021-07-01
- 期刊:
- 影响因子:3.7
- 作者:Hampel, Alexander;Lee-Hand, Jeremy;Dreyer, Cyrus E.
- 通讯作者:Dreyer, Cyrus E.
Cooperative Interactions between Surface Terminations Explain Photocatalytic Water Splitting Activity on SrTiO3
表面终止之间的协同相互作用解释了 SrTiO3 上的光催化水分解活性
- DOI:10.1103/prxenergy.1.023002
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sharma, Vidushi;Bein, Benjamin;Lai, Amanda;Pamuk, Betül;Dreyer, Cyrus E.;Fernández-Serra, Marivi;Dawber, Matthew
- 通讯作者:Dawber, Matthew
Quantum embedding methods for correlated excited states of point defects: Case studies and challenges
- DOI:10.1103/physrevb.105.235104
- 发表时间:2021-05
- 期刊:
- 影响因子:3.7
- 作者:Lukas Muechler;D. I. Badrtdinov;A. Hampel;Jennifer Cano;M. Rösner;C. Dreyer
- 通讯作者:Lukas Muechler;D. I. Badrtdinov;A. Hampel;Jennifer Cano;M. Rösner;C. Dreyer
Interplay between breathing-mode distortions and magnetic order in rare-earth nickelates from ab initio magnetic models
从头算磁模型得出的稀土镍酸盐呼吸模式畸变与磁序之间的相互作用
- DOI:10.1103/physrevb.104.054403
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Badrtdinov, Danis I.;Hampel, Alexander;Dreyer, Cyrus E.
- 通讯作者:Dreyer, Cyrus E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cyrus Dreyer其他文献
Cyrus Dreyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cyrus Dreyer', 18)}}的其他基金
CAREER: Correlated excited states of point defects in insulators
职业:绝缘体中点缺陷的相关激发态
- 批准号:
2237674 - 财政年份:2023
- 资助金额:
$ 33.35万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Standard Grant
REU Site: Accelerator and Nuclear Physics
REU 站点:加速器和核物理
- 批准号:
2348822 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Standard Grant
REU Site: REU in Theoretical and Experimental Physics
REU 网站:REU 理论与实验物理
- 批准号:
2348872 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Continuing Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
- 批准号:
2349111 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Continuing Grant
REU Site: Physics Research in the Nation's Capital
REU 网站:国家首都的物理研究
- 批准号:
2349155 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Continuing Grant
REU Site: Sustainable Physics at Penn State: From the Subatomic to the Cosmos
REU 网站:宾夕法尼亚州立大学的可持续物理学:从亚原子到宇宙
- 批准号:
2349159 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Continuing Grant
REU Site: Appalachian Mathematics and Physics Site
REU 站点:阿巴拉契亚数学和物理站点
- 批准号:
2349289 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Standard Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
- 批准号:
2349368 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Standard Grant
REU Site: Research Experiences for Undergraduates in Physics and Astronomy at the University of Toledo
REU 网站:托莱多大学物理和天文学本科生的研究经验
- 批准号:
2349585 - 财政年份:2024
- 资助金额:
$ 33.35万 - 项目类别:
Continuing Grant