Expeditions: Coherent Ising Machines for Optimization, Machine Learning and Neuromorphic Computing

探险:用于优化、机器学习和神经形态计算的相干 Ising 机器

基本信息

  • 批准号:
    1918549
  • 负责人:
  • 金额:
    $ 999.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

This Expeditions project seeks to gain a deeper understanding of the fundamental nature and potential uses of Coherent Ising Machines (CIMs). These machines exploit unconventional computing architectures to solve crucial optimization problems for application domains ranging from logistics and robotics to materials engineering and drug design. Based on the performance of current CIM prototypes, next-generation CIMs hold great promise to drive substantial practical advances in artificial intelligence (AI) capabilities in such fields. CIMs are of significant fundamental research interest as well, as novel architectures with which we can test transformative ideas for computer engineering in the post-Moore’s Law era. CIMs exploit a synergistic combination of optical and electronic components to achieve both massive data connectivity and fast programmable logic. They likewise utilize an unconventional optical memory that represents a stepping stone towards more radical quantum information technologies. CIM prototypes today achieve substantially greater scale while leveraging more incremental advances in device physics than do prototype quantum computers. Work to develop new CIM applications, benchmark CIM prototypes, and analyze CIM scaling can thus shed new light on poorly understood aspects of the physics of computation that sit between conventional technology and an idealized quantum regime. CIMs rely upon data processing primitives with substantial parallels to those required for deep learning, suggesting that technical innovations arising from CIM research may have broader impact in hardware development for AI. The core research of this CIM Expedition will thus serve as an important complement to ongoing efforts towards quantum and neuromorphic computing. This CIM Expedition will support the development of advanced prototype hardware incorporating recent advances in nanophotonics, optoelectronics and ultrafast laser sources. In continuing to explore the complementarity of optics and electronics for specialized optimization/AI architectures, its researchers will be particularly interested in assessing tradeoffs between raw speed and energy efficiency that can be made in new ways in this hybrid design space. The project will investigate generalizations of CIM architectures utilizing insights from reservoir computing and message passing algorithms, and establish a general theory of the role of quantum effects in CIM including strategies to exploit them robustly. The project will extend recent theoretical analyses of the dynamics of deep learning neural networks to elucidate subtle connections between the mathematical structure of hard optimization problems and the solution trajectories of physical computing machines. The CIM Expedition team will work with industrial partners and applications-domain specialists to perform extensive benchmarking of existing CIM prototypes, forecasting feasible CIM performance in comparison with conventional computing approaches as well as emergent quantum computing. This work will follow best practices for making comparisons across disparate hardware platforms and realistic application use cases in combinatorial optimization and machine learning, established previously by members of the CIM Expedition team. Overall the project will aim to develop a sharper understanding of the capabilities and operating principles of current CIM prototypes, as well as a clearer picture of future possibilities for CIM scaling and fundamental performance improvements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该探险项目旨在深入了解相干伊辛机(CIMs)的基本性质和潜在用途。这些机器利用非常规的计算架构来解决从物流和机器人到材料工程和药物设计等应用领域的关键优化问题。基于当前CIM原型的性能,下一代CIM有望在这些领域推动人工智能(AI)能力的实质性实际进展。cim也是重要的基础研究兴趣,作为一种新颖的架构,我们可以用它来测试后摩尔定律时代计算机工程的变革思想。CIMs利用光学和电子元件的协同组合来实现大量数据连接和快速可编程逻辑。他们还利用了一种非传统的光存储器,这是迈向更激进的量子信息技术的垫脚石。今天的CIM原型实现了更大的规模,同时在设备物理方面利用了比原型量子计算机更多的增量进步。因此,开发新的CIM应用程序、对CIM原型进行基准测试以及分析CIM缩放的工作可以为位于传统技术和理想量子体系之间的计算物理的一些不为人所知的方面提供新的思路。CIM依赖的数据处理原语与深度学习所需的数据处理原语有很大的相似之处,这表明CIM研究产生的技术创新可能对人工智能的硬件开发产生更广泛的影响。因此,这次CIM远征的核心研究将作为对量子和神经形态计算正在进行的努力的重要补充。这次CIM考察将支持先进原型硬件的开发,并结合纳米光子学、光电子学和超快激光源的最新进展。为了继续探索光学和电子在专业优化/人工智能架构方面的互补性,其研究人员将特别感兴趣的是评估在这种混合设计领域中可以以新方式实现的原始速度和能源效率之间的权衡。该项目将利用储存库计算和消息传递算法的见解来研究CIM架构的泛化,并建立量子效应在CIM中的作用的一般理论,包括健壮地利用它们的策略。该项目将扩展最近对深度学习神经网络动力学的理论分析,以阐明硬优化问题的数学结构与物理计算机器的解决轨迹之间的微妙联系。CIM远征团队将与工业合作伙伴和应用领域专家合作,对现有CIM原型进行广泛的基准测试,预测与传统计算方法和新兴量子计算相比可行的CIM性能。这项工作将遵循在不同硬件平台之间进行比较的最佳实践,以及组合优化和机器学习中的实际应用用例,这些都是由CIM Expedition团队成员先前建立的。总的来说,这个项目的目标是对当前CIM原型的能力和操作原理有更清晰的理解,以及对CIM扩展和基本性能改进的未来可能性有更清晰的认识。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feedback and constraints in physical optimizers
物理优化器中的反馈和约束
  • DOI:
    10.1117/12.3005007
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gunturu, Niharika;Mabuchi, Hideo;Ng, Edwin;Wennberg, Daniel;Yanagimoto, Ryotatsu
  • 通讯作者:
    Yanagimoto, Ryotatsu
General framework for ultrafast nonlinear photonics: unifying single and multi-envelope treatments [Invited]
超快非线性光子学的通用框架:统一单包络和多包络处理 [邀请]
  • DOI:
    10.1364/oe.513856
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Phillips, C. R.;Jankowski, M.;Flemens, N.;Fejer, M. M.
  • 通讯作者:
    Fejer, M. M.
Programmable large-scale simulation of bosonic transport in optical synthetic frequency lattices
  • DOI:
    10.1038/s41567-023-02075-7
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Alen Senanian;Logan G. Wright;Peter F. Wade;Hannah K. Doyle;P. McMahon
  • 通讯作者:
    Alen Senanian;Logan G. Wright;Peter F. Wade;Hannah K. Doyle;P. McMahon
Efficient sampling of ground and low-energy Ising spin configurations with a coherent Ising machine
  • DOI:
    10.1103/physrevresearch.4.013009
  • 发表时间:
    2022-01-03
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ng, Edwin;Onodera, Tatsuhiro;Yamamoto, Yoshihisa
  • 通讯作者:
    Yamamoto, Yoshihisa
Towards an engineering framework for ultrafast quantum nonlinear optics
  • DOI:
    10.1117/12.2576098
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ryotatsu Yanagimoto;Edwin Ng;Tatsuhiro Onodera;H. Mabuchi
  • 通讯作者:
    Ryotatsu Yanagimoto;Edwin Ng;Tatsuhiro Onodera;H. Mabuchi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hideo Mabuchi其他文献

Trapped modes in linear quantum stochastic networks with delays
  • DOI:
    10.1140/epjqt/s40507-016-0041-9
  • 发表时间:
    2016-03-03
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Gil Tabak;Hideo Mabuchi
  • 通讯作者:
    Hideo Mabuchi
Towards Deterministic Optical Quantum Gates with Dispersion-Engineered Temporal Trapping
迈向具有色散工程时间捕获的确定性光学量子门
  • DOI:
    10.1364/quantum.2023.qtu4a.2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Hamerly;Ryotatsu Yanagimoto;Edwin Ng;M. Jankowski;Rajveer Nehra;Alireza Marandi;Hideo Mabuchi
  • 通讯作者:
    Hideo Mabuchi

Hideo Mabuchi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hideo Mabuchi', 18)}}的其他基金

FET Core: Small: Workshop on Emerging Technologies of Post-Von Neumann Ising Machines
FET 核心:小型:后冯诺依曼伊辛机器新兴技术研讨会
  • 批准号:
    2139368
  • 财政年份:
    2021
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Standard Grant
Quantum Input-Output Modeling in the Ultra-Fast Domain: Theoretical Foundations and Experimental Validation
超快域中的量子输入输出建模:理论基础和实验验证
  • 批准号:
    2011363
  • 财政年份:
    2020
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Continuing Grant
EAGER: Enabling Quantum Leap: Temperature dependence of optical nonlinearities of monolayer transition-metal dichalcogenides
EAGER:实现量子飞跃:单层过渡金属二硫属化物光学非线性的温度依赖性
  • 批准号:
    1838497
  • 财政年份:
    2018
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Standard Grant
INSPIRE: Architectural Principles of Coherent Quantum Networks and Circuits
INSPIRE:相干量子网络和电路的架构原理
  • 批准号:
    1648807
  • 财政年份:
    2016
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Standard Grant
Quantum Nonlinear Optics in the Few-Atom Regime of Cavity QED
腔 QED 少原子状态下的量子非线性光学
  • 批准号:
    1307260
  • 财政年份:
    2013
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Continuing Grant
Coherent Feedback Approach to Continuous Quantum Error Correction
连续量子纠错的相干反馈方法
  • 批准号:
    1005386
  • 财政年份:
    2010
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Continuing Grant
Tracking Individual Biomolecules via Fluorescence Modulation and Feedback
通过荧光调制和反馈追踪单个生物分子
  • 批准号:
    0856205
  • 财政年份:
    2009
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Standard Grant
Workshop Proposal: Quantum Control Summer School, August 8-14, 2005; California Institute of Technology; Pasadena, CA
研讨会提案:量子控制暑期学校,2005 年 8 月 8 日至 14 日;
  • 批准号:
    0527129
  • 财政年份:
    2005
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Standard Grant
Conditional evolution and real-time feedback in open quantum systems
开放量子系统中的条件演化和实时反馈
  • 批准号:
    0354964
  • 财政年份:
    2004
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Continuing Grant
Complexity and Robustness in Quantum and Biomolecular Information Processing Systems
量子和生物分子信息处理系统的复杂性和鲁棒性
  • 批准号:
    0323542
  • 财政年份:
    2003
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

Non-coherent网络中的纠错码及其应用
  • 批准号:
    60972011
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
  • 批准号:
    23K28359
  • 财政年份:
    2024
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Fast coherent and incoherent control of atomic ions in scalable platforms
职业:在可扩展平台中对原子离子进行快速相干和非相干控制
  • 批准号:
    2338897
  • 财政年份:
    2024
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Continuing Grant
Micro-integrated coherent light sources and sensing components on a surface-wave platform
表面波平台上的微集成相干光源和传感组件
  • 批准号:
    24K00918
  • 财政年份:
    2024
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
6G-REFERENCE: 6G haRdware Enablers For cEll fRee cohEreNt Communications & sEnsing
6G 参考:无细胞一致性通信的 6G 硬件推动者
  • 批准号:
    10096702
  • 财政年份:
    2024
  • 资助金额:
    $ 999.47万
  • 项目类别:
    EU-Funded
Intelligently Scalable Multiple Light Sources for Parallel Coherent LiDAR
用于并行相干激光雷达的智能可扩展多光源
  • 批准号:
    23K22760
  • 财政年份:
    2024
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
PFI-TT: Compact, Coherent, Hydrophone Array Systems for Real-Time, Instantaneous, Wide-Area, Ocean Acoustic Monitoring from Wind Farms and Other Ocean Platforms
PFI-TT:紧凑、相干、水听器阵列系统,用于风电场和其他海洋平台的实时、瞬时、广域海洋声学监测
  • 批准号:
    2345791
  • 财政年份:
    2024
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Standard Grant
Coherent, Acceptable, Low Emission Cultural Heritage Efficient Renovation
连贯、可接受、低排放的文化遗产高效改造
  • 批准号:
    10089603
  • 财政年份:
    2023
  • 资助金额:
    $ 999.47万
  • 项目类别:
    EU-Funded
Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
  • 批准号:
    23H01987
  • 财政年份:
    2023
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312994
  • 财政年份:
    2023
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Standard Grant
NSF-BSF: Universality Puzzles and Coherent Control of Efimov Physics with 7Li Atoms
NSF-BSF:7Li 原子 Efimov 物理的普遍性难题和相干控制
  • 批准号:
    2308791
  • 财政年份:
    2023
  • 资助金额:
    $ 999.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了