Robust Inference on Counterfactuals

反事实的稳健推理

基本信息

  • 批准号:
    1919034
  • 负责人:
  • 金额:
    $ 23.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Large scale and detailed econometric models are used to evaluate the effects of economic and social policies before these policies are implemented. This approach is needed because experimenting with alternative policies is too costly or not possible. In developing data-ready models for such policy evaluation, model-builders often make several restrictive assumptions without the guidance of economic theory. However, policy predictions can be very sensitive to such assumptions. Researchers and policy makers need methods to help understand to what extent policy predictions are driven by economically grounded assumptions or on restrictive assumptions. The proposed research project will develop econometric tools that allow researchers to judge whether policy predictions are based on economically grounded theory or on restrictive assumptions. Researchers studying education, labor, public health, antitrust, trade, development, and environmental policies, among others, will use the tools developed in this project. This research project will therefore aid in formulating policies to improve social outcomes including welfare, the efficient provision of goods and services, and economic growth and competitiveness. The research will also contribute at a technical level to STEM education including operations research and statistics. The goal of the proposed research is to develop robust, computationally tractable estimation and inference methods for counterfactuals in structural econometric models. The methods will be robust in the sense that they will characterize the set of counterfactuals predicted by the model when some distributional or functional form assumptions are relaxed but other features of the model more strongly grounded in economic theory are maintained. To provide computational tractability, the research will build on recent advances in convex programming methods developed in the field of distributionally robust optimization (DRO) in operations research. The research will advance techniques and inference procedures developed in DRO to accommodate important distinguishing features of structural econometric models, including endogeneity, fixed-point constraints, and unobserved heterogeneity. The inference procedures developed during this research will also contribute broadly to the literature on partially identified semi-parametric econometric models. The methods will be specialized to leading models of demand for differentiated products, workhorse dynamic models of single-agent behavior, and static and dynamic models of strategic interactions between multiple agents.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在经济和社会政策实施之前,使用大规模和详细的计量经济模型来评估这些政策的效果。之所以需要这种方法,是因为试验替代政策的成本太高或不可能。在为这种政策评估开发数据就绪模型时,模型构建者经常在没有经济理论指导的情况下做出一些限制性假设。然而,政策预测可能对此类假设非常敏感。研究人员和政策制定者需要一些方法来帮助理解政策预测在多大程度上是由经济基础假设或限制性假设驱动的。拟议的研究项目将开发计量经济学工具,使研究人员能够判断政策预测是基于经济基础理论还是基于限制性假设。研究教育,劳动,公共卫生,反垄断,贸易,发展和环境政策等的研究人员将使用该项目中开发的工具。因此,该研究项目将有助于制定政策,以改善社会成果,包括福利,有效提供商品和服务,以及经济增长和竞争力。该研究还将在技术层面上为STEM教育做出贡献,包括运筹学和统计学。本研究的目标是为结构计量经济模型中的反事实问题开发稳健的、计算上易于处理的估计和推断方法。这些方法将是稳健的,因为当一些分布或函数形式的假设被放松时,它们将表征模型预测的反事实集,但模型的其他特征更强烈地扎根于经济理论。为了提供计算的易处理性,研究将建立在凸规划方法的分布鲁棒优化(DRO)在运筹学领域的最新进展。该研究将推进DRO中开发的技术和推理程序,以适应结构计量经济模型的重要显着特征,包括内隐性,定点约束和未观察到的异质性。在本研究过程中开发的推理程序也将有助于广泛的文献部分确定的半参数计量经济模型。该方法将专门用于差异化产品需求的领先模型、单代理行为的主力动态模型以及多代理之间战略交互的静态和动态模型。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Counterfactual Sensitivity and Robustness
反事实敏感性和稳健性
  • DOI:
    10.3982/ecta17232
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Christensen, Timothy;Connault, Benjamin
  • 通讯作者:
    Connault, Benjamin
Adaptive Estimation and Uniform Confidence Bands for Nonparametric Structural Functions and Elasticities
非参数结构函数和弹性的自适应估计和均匀置信带
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Xiaohong;Christensen, Timothy;Kankanala, Sid
  • 通讯作者:
    Kankanala, Sid
Existence and uniqueness of recursive utilities without boundedness
无界递归效用的存在唯一性
  • DOI:
    10.1016/j.jet.2022.105413
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Christensen, Timothy M.
  • 通讯作者:
    Christensen, Timothy M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Christensen其他文献

(Machine) Learning Parameter Regions ∗
(机器)学习参数区域*
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    José Luis;Montiel Olea;James Nesbit;Jonás Arias;Timothy Christensen;Timothy Cogley;Thorsten Drautzburg;Lutz Kilian;Mikkel Plagborg;Guillaume Pouliot;Azeem Andres Santos
  • 通讯作者:
    Azeem Andres Santos
Little Debbie, or the Logic of Late Capitalism: Consumerism, Whiteness, and Addiction in Mat Johnson's Pym
小黛比,或晚期资本主义的逻辑:马特·约翰逊的《皮姆》中的消费主义、白人和成瘾
  • DOI:
    10.1353/lit.2017.0009
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Christensen
  • 通讯作者:
    Timothy Christensen
The Unbearable Whiteness of Being: Misrecognition, Pleasure, and White Identityin Kipling's Kim
难以忍受的白色:吉卜林笔下的金的误认、快乐和白人身份
  • DOI:
    10.1353/lit.2012.0014
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Christensen
  • 通讯作者:
    Timothy Christensen
Bill Cosby and American Racial Fetishism
比尔·科斯比和美国种族拜物教
  • DOI:
    10.1353/pmc.2007.0017
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Timothy Christensen
  • 通讯作者:
    Timothy Christensen
The "Bestial Mark" of Race in The Island of Dr. Moreau
莫罗博士岛的种族“兽性印记”
  • DOI:
    10.1353/crt.2005.0013
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Christensen
  • 通讯作者:
    Timothy Christensen

Timothy Christensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Christensen', 18)}}的其他基金

NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
  • 批准号:
    EP/Z000335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Research Grant

相似海外基金

Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Continuing Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Continuing Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
  • 批准号:
    BB/Y51388X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Research Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
  • 批准号:
    2336886
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Standard Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 23.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了