Effect of hydrodynamic interactions on electrochemical performance of flowable electrodes
流体动力相互作用对可流动电极电化学性能的影响
基本信息
- 批准号:1921320
- 负责人:
- 金额:$ 35.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A new type of electrode called a "flowable electrode" has been used in several emerging energy- and environment-related technologies, such as the electrochemical flow capacitor for storing electrical energy and capacitive deionization for treating brackish water. During the operation of a flowable electrode, a slurry of small, highly porous carbon beads mixed with an aqueous electrolyte flows into an electrochemical cell and is charged with an applied voltage. Ions are adsorbed to the interior surface of the carbon beads through their pores to store electrical charge. Because the porous carbon beads have enormous interior surface area relative to their mass, they can store or release a tremendous amount of ions and electrons in a very short time. This process allows more rapid charging and discharging compared with conventional rechargeable batteries. The flow capacitor has the potential to achieve 100 times faster charging and 1000 times longer lifetime than Li-ion batteries. Furthermore, the flow architecture makes it scalable for grid energy storage. Achieving these potentials requires detailed knowledge about how the detailed configuration of the slurry affects electrical conductivity and charging. The electrical network within the slurry consists of carbon particles in intermittent contact causing electrical pathways to be rapidly disrupted and reformed. Thus, the entire slurry displays unique behavior in electrical conductivity and charging characteristics, which are key to the performance of the flowable electrode. This project will investigate how hydrodynamic interactions at the carbon particle level affects the critical properties of flowable electrodes. The results will help improve efficiency of flow electrodes, which will contribute to sustainable developments in energy and water resources. The interdisciplinary nature of the project provides rich opportunities for students from high-school to graduate levels to participate in the research.This project combines experimental and computational approaches to explore the hydrodynamic interactions of activated carbon particles with diameters from 1 to 10 micrometers, and the electrochemical processes of flowable electrodes. Novel microfluidic devices will be constructed to directly observe particle interactions and, simultaneously, to measure the electrical or electrochemical properties of the slurry. Dielectric-rheo setups will be used to measure properties at the macroscopic level. The computational efforts will employ a new numerical model to simulate the micro-hydrodynamics of the particles, the topology-varying electrical circuit of the particle network, and their coupling. The experimental data will provide critical parameters such as the electrical resistance and capacitance of the particle network to the computational model. The computational model will extract effects of shear rate and particle concentration on the particle cluster characteristics, including cluster sizes, lengths, and orientations, and their effects on the anisotropic conductivity and transient charging behavior of the flowable electrode. The studies will produce knowledge to improve the performance of flowable electrodes in energy and environment technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一种被称为“流动电极”的新型电极已被用于几项新兴的能源和环境相关技术,如用于储存电能的电化学流动电容器和用于处理微咸水的电容去离子。在可流动电极的操作过程中,由小的、高度多孔的碳珠与水电解液混合的浆液流入电化学池,并被施加电压充电。离子通过碳珠的孔被吸附到内表面以储存电荷。由于多孔碳珠相对于它们的质量具有巨大的内表面积,它们可以在很短的时间内存储或释放大量的离子和电子。与传统的可充电电池相比,这一过程允许更快速的充电和放电。这种流动电容器有可能实现比锂离子电池快100倍的充电速度和1000倍的寿命。此外,Flow体系结构使其可扩展用于网格能量存储。要实现这些电位,需要详细了解泥浆的详细结构如何影响导电性和电荷。泥浆中的电子网络由间歇性接触的碳颗粒组成,导致电子路径迅速中断和重塑。因此,整个浆料在导电性和充电特性方面表现出独特的行为,这是流动电极性能的关键。该项目将研究碳颗粒水平上的流体动力相互作用如何影响可流动电极的关键性能。结果将有助于提高流动电极的效率,这将有助于能源和水资源的可持续发展。该项目的跨学科性质为从高中到研究生水平的学生提供了丰富的参与研究的机会。该项目结合实验和计算方法来探索直径从1到10微米的活性碳颗粒的流体动力相互作用,以及流动电极的电化学过程。新型微流控装置将被构建成直接观察颗粒相互作用,同时测量浆料的电学或电化学性质。介电-流变仪将被用来测量宏观层面的性能。计算工作将采用一种新的数值模型来模拟粒子的微观流体动力学、粒子网络的拓扑变化电路以及它们之间的耦合。实验数据将为计算模型提供粒子网络的电阻和电容等关键参数。计算模型将提取剪切速率和颗粒浓度对颗粒团簇特征的影响,包括团簇的大小、长度和取向,以及它们对流动电极的各向异性电导率和瞬时充电行为的影响。这些研究将产生知识,以提高可流动电极在能源和环境技术方面的性能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Charging of flowable electrodes with bimodal distribution of carbon particles
具有碳颗粒双峰分布的可流动电极的充电
- DOI:10.1007/s10665-021-10177-5
- 发表时间:2021
- 期刊:
- 影响因子:1.3
- 作者:Stacks, Brandon;Luo, Haoxiang;Li, Deyu
- 通讯作者:Li, Deyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haoxiang Luo其他文献
Laminar boundary layer separation over a fluttering panel induced by an oblique shock wave
倾斜冲击波引起的颤振面板上的层流边界层分离
- DOI:
10.1016/j.jfluidstructs.2019.06.008 - 发表时间:
2019-10 - 期刊:
- 影响因子:3.6
- 作者:
Yingkun Li;Haoxiang Luo;许进升 - 通讯作者:
许进升
Interception of two spheres with slip surfaces in linear Stokes flow
线性斯托克斯流中两个具有滑移面的球体的截取
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:3.7
- 作者:
Haoxiang Luo;C. Pozrikidis - 通讯作者:
C. Pozrikidis
Hummingbirds use wing inertial effects to improve maneuverability
蜂鸟利用机翼惯性效应来提高机动性
- DOI:
10.1101/2023.07.21.550104 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mohammad Nasirul Haque;Bo Cheng;B. Tobalske;Haoxiang Luo - 通讯作者:
Haoxiang Luo
A hybrid formulation to suppress the numerical oscillations caused by immersed moving boundaries
抑制由浸没移动边界引起的数值振荡的混合公式
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Haoxiang Luo;Hu Dai;P. F. D. Sousa - 通讯作者:
P. F. D. Sousa
Computational Modeling of Particle Hydrodynamics and Charging Process for the Flowable Electrodes of Carbon Slurry
碳浆流动电极颗粒流体动力学和充电过程的计算模型
- DOI:
10.1149/2.1191912jes - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Mehdi Karzar;Haoxiang Luo;P. Cummings;K. Hatzell - 通讯作者:
K. Hatzell
Haoxiang Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haoxiang Luo', 18)}}的其他基金
Collaborative Research: Three-Dimensional Flow-Structure Interaction During Phonation
合作研究:发声过程中的三维流-结构相互作用
- 批准号:
1066962 - 财政年份:2011
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
CAREER: Flapping in the wind - passive mechanisms in insect wings for flight stabilization
职业:在风中拍动——昆虫翅膀中用于稳定飞行的被动机制
- 批准号:
0954381 - 财政年份:2010
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
半导体Hydrodynamic能量模型的数学分析
- 批准号:10001034
- 批准年份:2000
- 资助金额:5.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Elements: Multiparticle collision dynamics simulations of mesoscale hydrodynamic interactions in complex soft materials and environments
合作研究:元素:复杂软材料和环境中中尺度流体动力学相互作用的多粒子碰撞动力学模拟
- 批准号:
2310725 - 财政年份:2023
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Multiparticle collision dynamics simulations of mesoscale hydrodynamic interactions in complex soft materials and environments
合作研究:元素:复杂软材料和环境中中尺度流体动力学相互作用的多粒子碰撞动力学模拟
- 批准号:
2310724 - 财政年份:2023
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 35.93万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 35.93万 - 项目类别:
Hydrodynamic Interactions in Vortex Dominated Flows in the Vicinity of Walls
壁附近涡流主导流中的水动力相互作用
- 批准号:
RGPIN-2022-03330 - 财政年份:2022
- 资助金额:
$ 35.93万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of the bacterial type IX secretion system and its effect on subgingival biofilm formation by bacteria of the human oral microbiome
细菌 IX 型分泌系统的动态及其对人类口腔微生物组细菌龈下生物膜形成的影响
- 批准号:
10380154 - 财政年份:2020
- 资助金额:
$ 35.93万 - 项目类别:
Understanding Planet-Disk Interactions through Global Hydrodynamic Simulations.
通过全局流体动力学模拟了解行星盘相互作用。
- 批准号:
2442515 - 财政年份:2020
- 资助金额:
$ 35.93万 - 项目类别:
Studentship
Modeling Von Willebrand Factor Behavior in the Pulmonary Circulation in Health and Disease
模拟健康和疾病肺循环中的冯维勒布兰德因子行为
- 批准号:
9789035 - 财政年份:2018
- 资助金额:
$ 35.93万 - 项目类别:
Dynamics of the bacterial type IX secretion system and its effect on subgingival biofilm formation by bacteria of the human oral microbiome
细菌 IX 型分泌系统的动态及其对人类口腔微生物组细菌龈下生物膜形成的影响
- 批准号:
9286528 - 财政年份:2017
- 资助金额:
$ 35.93万 - 项目类别:
Hydrodynamic considerations for multiple fin interactions in rapid maneuvers
快速机动中多鳍相互作用的流体动力学考虑
- 批准号:
1703978 - 财政年份:2017
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant