Neutron Imaging Interferometry for Non-Destructive Testing
用于无损检测的中子成像干涉测量
基本信息
- 批准号:1929150
- 负责人:
- 金额:$ 22.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interferometry is a family of techniques in which waves are superimposed and cause a phenomenon of interference, which is used to extract information. Neutrons show dual particle and wave nature. They can be described as wave packets and show interference effects like X-rays and visible light. The primary focus of this project is to analyze and maximize the neutron interferometric beamline performances with simulations and experiments. The research team will also establish biomedical applications, which include non-invasive imaging of a bone-implant interface, to facilitate the manufacture of hip replacement implants. Within this project, the PI aims to build a novel comprehensive simulator allowing scatter and phase-shift of neutrons, suitable for realistic neutron interferometry and verified with experiments. The PI and a graduate trainee will perform simulations and experiments on Neutron Interferometry Imaging at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). First, a comprehensive computer simulator of neutron interferometry will be built by describing the neutron as a particle and a wave and verified. Second, special phase gratings will be investigated in simulations to improve Neutron Interferometric Tomography (NIT) performance. Third, a bone-metal interface will be imaged using NIT. This project will establish a strong neutron interferometric imaging program at Louisiana State University (LSU). This project seeks to aid researchers from multiple disciplines (neutron imaging scientists and non-destructive testing application specialists) and is synergistic with Louisiana Consortium on Neutron Scattering and LSU Medical Physics. It will establish a new research program for the PI and generate project software that will be disseminated on Github. The future projects generated by this fellowship and collaboration with NIST will train undergraduate students, graduate students, and postdocs at LSU. A combined Monte-Carlo and coherent wave simulation exist for X-ray interferometry but not for neutron interferometry. The primary focus of this project is to analyze and maximize the neutron interferometric far-field imaging beamline performances with simulations and experiments. The research team will also establish biomedical applications such as non-invasive ex-vivo test-imaging of a bone-implant interface, to facilitate the manufacture of hip replacement implants. Simulations and experiments on Neutron Interferometry Imaging will be conducted at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). First, a novel, comprehensive computer simulator will be built to describe the neutron as a particle, as well as a wave, and verified. The simulator will include Monte-Carlo based neutron scattering, coherent wave interference, and vibration effects. The simulations will be experimentally verified using dual-phase gratings existing in the system and other high-quality neutron phase gratings that are available on loan from Louisiana State University (LSU). The simulator will predict the far-field visibility and differential phase contrast (DPC) sensitivity at the NIST beamline as well as for two beamlines at Oakridge National Laboratory (ORNL). This objective advances the ORNL neutron imaging and scattering research, in synergy with the goals of the Louisiana Consortium of Neutron Scattering. Second, the conditions for ideal DPC imaging will be investigated in simulations. Special modulated phase gratings (MPG) will be evaluated to improve Neutron Interferometric Tomography (NIT) performance. DPC sensitivity will be investigated as a function of grating pitch or pitches and spatial modulation of MPG. Third, novel experiments will be conducted to observe a bone-metal interface ex-vivo with NIT at NIST.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
干涉测量是一种技术,其中波被叠加并引起干涉现象,用于提取信息。 中子具有粒子和波的双重性质。 它们可以被描述为波包,并显示出像X射线和可见光一样的干涉效应。 本计画的主要目的是借由模拟与实验来分析中子干涉光束线的性能,并使其最大化。该研究小组还将建立生物医学应用,其中包括骨植入物界面的非侵入性成像,以促进髋关节置换植入物的制造。 在这个项目中,PI的目标是建立一个新的综合模拟器,允许中子的散射和相移,适用于现实的中子干涉测量,并通过实验验证。 PI和一名研究生实习生将在美国国家标准与技术研究院(NIST)中子研究中心(NCNR)进行中子干涉成像的模拟和实验。 首先,将中子描述为粒子和波,建立一个全面的中子干涉测量计算机模拟器,并进行验证。第二,特殊的相位光栅将在模拟研究,以提高中子干涉层析成像(NIT)的性能。 第三,骨-金属界面将使用NIT成像。 该项目将在路易斯安那州立大学(LSU)建立一个强中子干涉成像计划。 该项目旨在帮助来自多个学科的研究人员(中子成像科学家和无损检测应用专家),并与路易斯安那州中子散射联盟和路易斯安那州立大学医学物理学协同。 它将为PI建立一个新的研究计划,并生成将在Github上传播的项目软件。 由这个奖学金和NIST合作产生的未来项目将在路易斯安那州立大学培养本科生,研究生和博士后。结合蒙特-卡罗和相干波模拟存在的X射线干涉测量,但没有中子干涉测量。本计画的主要目的是借由模拟与实验来分析中子干涉远场成像光束线的性能,并使其达到最佳化。 该研究小组还将建立生物医学应用,如骨-植入物界面的非侵入性离体测试成像,以促进髋关节置换植入物的制造。 中子干涉成像的模拟和实验将在美国国家标准与技术研究院(NIST)中子研究中心(NCNR)进行。 首先,将建立一个新颖、全面的计算机模拟器,将中子描述为粒子和波,并进行验证。 模拟器将包括基于蒙特-卡罗的中子散射、相干波干涉和振动效应。 模拟将使用系统中现有的双相位光栅和路易斯安那州立大学(LSU)提供的其他高质量中子相位光栅进行实验验证。 该模拟器将预测NIST光束线以及橡树岭国家实验室(ORNL)的两条光束线的远场可见度和微分相衬(DPC)灵敏度。 这一目标推进了ORNL中子成像和散射研究,与路易斯安那中子散射联盟的目标协同。 其次,将在模拟中研究理想DPC成像的条件。 将评估特殊的调制相位光栅(MPG),以提高中子干涉层析成像(NIT)的性能。 DPC灵敏度将作为光栅间距或间距和MPG的空间调制的函数进行研究。 第三,将在NIST与NIT一起进行新的实验,以观察骨-金属界面。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOYONI DEY其他文献
JOYONI DEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
非小细胞肺癌Biomarker的Imaging MS研究新方法
- 批准号:30672394
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Implementation and validation of a lung x-ray interferometry imaging system, with applications to COPD, COVID-19 and other lung diseases
肺 X 射线干涉成像系统的实施和验证,应用于 COPD、COVID-19 和其他肺部疾病
- 批准号:
10384525 - 财政年份:2022
- 资助金额:
$ 22.77万 - 项目类别:
Phase Shear Imaging for Long-Baseline Interferometry
用于长基线干涉测量的相位剪切成像
- 批准号:
2601529 - 财政年份:2021
- 资助金额:
$ 22.77万 - 项目类别:
Studentship
Imaging Earth's Interior with Seismic Interferometry & Machine Learning
使用地震干涉测量技术对地球内部进行成像
- 批准号:
2449088 - 财政年份:2020
- 资助金额:
$ 22.77万 - 项目类别:
Studentship
Breast Cancer Detection and Imaging using Analyzer-less X-ray Interferometry
使用无分析仪 X 射线干涉测量法进行乳腺癌检测和成像
- 批准号:
10057610 - 财政年份:2020
- 资助金额:
$ 22.77万 - 项目类别:
Breast Cancer Detection and Imaging using Analyzer-less X-ray Interferometry
使用无分析仪 X 射线干涉测量法进行乳腺癌检测和成像
- 批准号:
10382323 - 财政年份:2020
- 资助金额:
$ 22.77万 - 项目类别:
Breast Cancer Detection and Imaging using Analyzer-less X-ray Interferometry
使用无分析仪 X 射线干涉测量法进行乳腺癌检测和成像
- 批准号:
10213027 - 财政年份:2020
- 资助金额:
$ 22.77万 - 项目类别:
Subsurface structure imaging for strong motion prediction using seismic interferometry
使用地震干涉测量进行强运动预测的地下结构成像
- 批准号:
19K15262 - 财政年份:2019
- 资助金额:
$ 22.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nano-scale imaging with Hong-Ou-Mandel Interferometry
使用红欧曼德尔干涉仪进行纳米级成像
- 批准号:
EP/R030081/1 - 财政年份:2018
- 资助金额:
$ 22.77万 - 项目类别:
Research Grant
Nano-scale imaging with Hong-Ou-Mandel Interferometry (Nano-HOM)
使用红欧曼德尔干涉仪 (Nano-HOM) 进行纳米级成像
- 批准号:
EP/R024170/1 - 财政年份:2018
- 资助金额:
$ 22.77万 - 项目类别:
Research Grant
RAPID Opportunity for U/V band stellar imaging using intensity interferometry with the VERITAS Observatory
使用 VERITAS 天文台强度干涉测量法进行 U/V 波段恒星成像的快速机会
- 批准号:
1806262 - 财政年份:2018
- 资助金额:
$ 22.77万 - 项目类别:
Standard Grant