Collaborative Research: Predicting and Optimizing User Comfort for Lower-limb Exoskeletons through Mutual Motor Adaptations

合作研究:通过相互运动适应来预测和优化下肢外骨骼的用户舒适度

基本信息

  • 批准号:
    1930430
  • 负责人:
  • 金额:
    $ 41.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Assistive robotic devices such as exoskeletons can be used to enhance human capabilities, help with physically-intense labor, and improve rehabilitation. User-perceived comfort is critically important for the wide-spread adoption of assistive robotic devices, yet the definition and measurement of comfort remains elusive. The research objective of this project is to systematically define, model, and optimize the comfort perceived by human users while walking with powered leg exoskeletons. The project pursues three objectives: The first develops a model of comfort based on biosignals recorded during walking with lower limb exoskeleton robots. The second optimizes parameters of exoskeleton control based on verbalized reports of user comfort. The third optimizes exoskeleton control for comfort without direct user reporting. If successful, the project will lead to a new generation of exoskeleton devices that are more compatible with the humans they are designed to serve. This would benefit a large population of people with gait impairments, thereby advancing the national health and welfare. Broader impacts of this work include novel, hands-on outreach activities serving underrepresented minorities in central Pennsylvania and in Dallas, Texas.This project takes significant steps towards the development of robotic controllers that adapt continuously to each user and minimize user discomfort. This will be achieved by using neural network models to analyze and model a selected set of the users' biological signals (e.g., metabolic cost, heart rate, muscle activation, kinematics, and kinetics) to develop a novel comfort predictor, and then by creating intelligent controllers that maximize the user comfort via human-in-the-loop reinforcement learning. Human subject experiments are planned using two devices (a knee and hip device, and an ankle device) to verify that the comfort predictor can be used effectively with the optimization method. If successful, the project could benefit a large population of people with gait impairments and those requiring robotic assistance with physically-intense labor.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
辅助机器人设备,如外骨骼,可用于增强人类能力,帮助体力劳动,并改善康复。用户感知的舒适度对于辅助机器人设备的广泛采用至关重要,但舒适度的定义和测量仍然难以捉摸。该项目的研究目标是系统地定义,建模和优化人类用户在使用动力腿外骨骼行走时所感受到的舒适度。 该项目追求三个目标:第一个是开发一个基于下肢外骨骼机器人行走过程中记录的生物信号的舒适度模型。第二个优化参数的外骨骼控制的基础上,口头报告的用户舒适度。第三个优化了外骨骼控制的舒适性,而无需直接的用户报告。如果成功,该项目将导致新一代的外骨骼设备,更适合他们设计服务的人类。这将使大量有步态障碍的人受益,从而促进国民健康和福利。 这项工作的更广泛的影响,包括新的,动手外展活动,为代表性不足的少数民族在宾夕法尼亚州中部和达拉斯,得克萨斯州。该项目采取了重大步骤,对机器人控制器的发展,不断适应每个用户,并尽量减少用户的不适。这将通过使用神经网络模型来分析和建模用户的生物信号的选定集合(例如,代谢成本、心率、肌肉激活、运动学和动力学)来开发一种新的舒适度预测器,然后通过创建智能控制器,通过人在回路强化学习来最大化用户舒适度。人体受试者实验计划使用两个设备(膝盖和髋关节设备,和脚踝设备),以验证舒适度预测器可以有效地使用优化方法。 如果成功的话,该项目将使大量的步态障碍患者和需要机器人辅助的体力劳动者受益。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correlation of Comfort, Metabolic Cost & Muscle Activation for an Ankle Exoskeleton
舒适度与代谢成本的相关性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Martin其他文献

Letter to the editor: Demented and chronic depressed patients attending a day hospital: stress expressed by carers
给编辑的信:前往日间医院的痴呆症和慢性抑郁症患者:护理人员表达的压力
  • DOI:
    10.1002/(sici)1099-1166(199809)13:9<642::aid-gps818>3.0.co;2-2
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    4
  • 作者:
    H. Rosenvinge;D. Jones;Elizabeth Judge;Anne Martin
  • 通讯作者:
    Anne Martin
III. IMPACTS OF EARLY HEAD START PARTICIPATION ON CHILD AND PARENT OUTCOMES AT AGES 2, 3, AND 5
三.
Approaches to Learning and Hispanic Children’s Math Scores
学习方法和西班牙裔儿童的数学成绩
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erin Bumgarner;Anne Martin;J. Brooks
  • 通讯作者:
    J. Brooks
Public Preschool Predicts Stronger Third-Grade Academic Skills
公立学前班预计三年级的学术技能会更强
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Anna D. Johnson;Anne Partika;Anne Martin;Ian Lyons;Sherri Castle;Deborah Phillips
  • 通讯作者:
    Deborah Phillips
A study investigating the experience of working for people with Parkinson’s and the factors that influence workplace success
一项研究调查为帕金森氏症患者工作的经历以及影响工作场所成功的因素
  • DOI:
    10.1080/09638288.2017.1323237
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Rebecca L. Mullin;K. Ray Chaudhuri;Thomasin C. Andrews;Anne Martin;Stella Gay;Claire M. White
  • 通讯作者:
    Claire M. White

Anne Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Martin', 18)}}的其他基金

CAREER: Modeling Human Gait to Optimize Exoskeleton Control and Understand How the Goal Changes across Walking Tasks
职业:模拟人类步态以优化外骨骼控制并了解步行任务中目标如何变化
  • 批准号:
    1943561
  • 财政年份:
    2020
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Continuing Grant
Effect of Variability on Fall Risk and Energetic Cost in Biped Walking
变异性对双足行走跌倒风险和能量消耗的影响
  • 批准号:
    1727540
  • 财政年份:
    2017
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330759
  • 财政年份:
    2024
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343204
  • 财政年份:
    2024
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343203
  • 财政年份:
    2024
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330760
  • 财政年份:
    2024
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
  • 批准号:
    2308410
  • 财政年份:
    2023
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310356
  • 财政年份:
    2023
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
Collaborative Research: MODEL ENABLED MACHINE LEARNING (MnML) FOR PREDICTING ECOSYSTEM REGIME SHIFTS
合作研究:用于预测生态系统制度转变的模型机器学习 (MnML)
  • 批准号:
    2233983
  • 财政年份:
    2023
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Predicting Micro to Macro-scale Hot-spot and Hot-moment dynamics in Arctic Tundra Ecosystems
合作研究:预测北极苔原生态系统的微观到宏观热点和热点动态
  • 批准号:
    2311075
  • 财政年份:
    2023
  • 资助金额:
    $ 41.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了