EAGER: Transforming Additive Nanomanufacturing with Machine Learning
EAGER:通过机器学习改变增材纳米制造
基本信息
- 批准号:1930582
- 负责人:
- 金额:$ 28.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optoelectronic substrates form a critical component in a variety of functional devices where the substrate functions to allow light to pass through and, at the same time, protect the device from the ambient environment. Applications include displays, solar cells, smart phones, tablets, light emitting diodes (LEDs), as well as emerging flexible versions of these optoelectronic devices such as radio frequency identification (RFID) tags, artificial skin, and e-paper. The availability of high performance, optoelectronic devices greatly impacts technologies such as wearables, the Internet of Things, and more, thus contributing to the nation's economy and security. Currently, rigid glass substrates are typically used with an antireflection layer. However, these coatings do not provide for antireflection across a wide range of wavelengths or angles and lack other desired multi-functionality. This EArly-concept Grants for Exploratory Research (EAGER) program award supports research to create a framework for applying machine learning methods to nanomanufacturing processes. A specific goal is to utilize the machine learning and optimization approach to design and construct nanophotonic structures on surfaces to achieve different optical properties such as anti-fogging and anti-bacterial. Additive nanomanufacturing is a versatile method to create complex 3D structures with nano-scale features. Since many surface engineering designs and functions are possible, a machine learning approach is needed. The project studies nanomanufacturing approaches involving maskless and scalable etching and deposition processes that are commonly used in the semiconductor device fabrication industry. This research activity is highly multidisciplinary and exemplifies the unique role that industrial engineering and materials engineering play in the future of nanomanufacturing research and in training the future workforce.The project creates a framework that integrates nanomanufacturing methods, such as reactive ion etching, with machine learning and optimization tools, physical simulations, and multi-functional characterizations to demonstrate durable and flexible nanostructured optoelectronic substrates with high performance photon management properties, such as antireflection and haze management. Most of the recent work in surface engineering of multi-functional nanostructure coatings for a wide variety of rigid and emerging flexible optoelectronic devices has involved traditional trial-and-error approaches that offer, at best, fragmented and limited systematic studies of small regions of the parameter space absent any embedded historical knowledge. Major challenges exist in demonstrating the scalability of manufacturing processes. This research seeks to test the hypothesis that a machine learning and optimization framework can be utilized to more rapidly design and engineer optoelectronic substrates compared to current incremental approaches. Machine learning methods are integrated to fit experimental data, predict the performance of new structures, and provide heuristics for additional experiments. Current limitations are overcome through the creation of new machine learning methods that succinctly learn nanostructure-additive NanoManufacturing-property relationships with the ability to generalize across domains. Machine learning models are developed to determine how to manufacture 3D nanostructured surfaces on glass and plastics using additive nanomanufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光电基板形成各种功能器件中的关键部件,其中基板用于允许光通过,同时保护器件免受周围环境的影响。应用包括显示器、太阳能电池、智能手机、平板电脑、发光二极管(LED)以及这些光电设备的新兴柔性版本,例如射频识别(RFID)标签、人造皮肤和电子纸。高性能光电设备的可用性极大地影响了可穿戴设备、物联网等技术,从而为国家经济和安全做出了贡献。目前,刚性玻璃基板通常与夹层一起使用。然而,这些涂层不提供跨越宽范围的波长或角度的反射,并且缺乏其他期望的多功能性。这个早期概念的探索性研究(EAGER)计划奖赠款支持研究,以创建一个框架,将机器学习方法应用于纳米制造过程。一个具体的目标是利用机器学习和优化方法在表面上设计和构建纳米光子结构,以实现不同的光学特性,如防雾和抗菌。增材纳米制造是一种多功能的方法,用于创建具有纳米尺度特征的复杂3D结构。由于许多表面工程设计和功能是可能的,因此需要机器学习方法。该项目研究纳米制造方法,涉及半导体器件制造行业中常用的无掩模和可扩展的蚀刻和沉积工艺。该研究活动是高度多学科的,并体现了工业工程和材料工程在纳米制造研究的未来和培训未来的劳动力中发挥的独特作用。该项目创建了一个框架,将纳米制造方法,如反应离子蚀刻,与机器学习和优化工具,物理模拟,和多功能表征,以展示具有高性能光子管理特性(例如光致变色和雾度管理)的耐用且柔性的纳米结构光电基板。大多数最近的工作在表面工程的多功能纳米结构涂层的各种各样的刚性和新兴的柔性光电器件涉及传统的试错法,提供,充其量,分散和有限的系统研究的小区域的参数空间没有任何嵌入的历史知识。在证明制造工艺的可扩展性方面存在重大挑战。这项研究旨在测试一个假设,即与当前的增量方法相比,机器学习和优化框架可以用于更快速地设计和工程化光电基板。集成了机器学习方法来拟合实验数据,预测新结构的性能,并为额外的实验提供分析。通过创建新的机器学习方法克服了当前的局限性,这些方法简洁地学习纳米结构-添加剂NanoManufacturing-属性关系,并具有跨领域概括的能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Robust Classification Trees
最优鲁棒分类树
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nathan Justin, Sina Aghaei
- 通讯作者:Nathan Justin, Sina Aghaei
On the Convexification of Constrained Quadratic Optimization Problems with Indicator Variables
- DOI:10.1007/978-3-030-45771-6_33
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Linchuan Wei;A. Gómez;Simge Küçükyavuz
- 通讯作者:Linchuan Wei;A. Gómez;Simge Küçükyavuz
Mechanically durable, super-repellent 3D printed microcell/nanoparticle surfaces
- DOI:10.1007/s12274-022-4139-3
- 发表时间:2022-03
- 期刊:
- 影响因子:9.9
- 作者:Sajad Haghanifar;A. Galante;Mehdi Zarei;Jun Chen;Susheng Tan;Paul W. Leu
- 通讯作者:Sajad Haghanifar;A. Galante;Mehdi Zarei;Jun Chen;Susheng Tan;Paul W. Leu
OUTLIER DETECTION IN TIME SERIES VIA MIXED-INTEGER CONIC QUADRATIC OPTIMIZATION
- DOI:10.1137/19m1306233
- 发表时间:2021-01-01
- 期刊:
- 影响因子:3.1
- 作者:Gomez, Andres
- 通讯作者:Gomez, Andres
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Leu其他文献
Paul Leu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Leu', 18)}}的其他基金
IUCRC Phase I: University of Pittsburgh: Center for Materials Data Science for Reliability and Degradation (MDS-Rely)
IUCRC 第一阶段:匹兹堡大学:可靠性和退化材料数据科学中心 (MDS-Rely)
- 批准号:
2052662 - 财政年份:2021
- 资助金额:
$ 28.41万 - 项目类别:
Continuing Grant
Planning IUCRC at University of Pittsburgh: Center for Data Science for Materials Reliability and Degradation (MDS-Rely)
匹兹堡大学规划 IUCRC:材料可靠性和降解数据科学中心 (MDS-Rely)
- 批准号:
1841450 - 财政年份:2018
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
CAREER: Statistical Design of Hierarchical Metal Structures for High Performance, Flexible Solar Cells
职业:高性能柔性太阳能电池分层金属结构的统计设计
- 批准号:
1552712 - 财政年份:2016
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
EAGER: Feasibility Demonstration of Laser Manufacturing of Silicon Photonic Crystals for Solar Cells
EAGER:太阳能电池用硅光子晶体激光制造的可行性论证
- 批准号:
1348591 - 财政年份:2013
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
Nanosphere Coatings on Silicon Thin Film Photovoltaics
硅薄膜光伏上的纳米球涂层
- 批准号:
1233151 - 财政年份:2012
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
NUE: Flipping Learning Models to Illuminate Nanomanufacturing and Nanomaterials for Photovoltaics
NUE:翻转学习模型以阐明纳米制造和光伏纳米材料
- 批准号:
1242075 - 财政年份:2012
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
相似国自然基金
基于全固态锂硫电池催化转化的功能性添加剂的开发及作用机理研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
土壤-植物系统中轮胎添加剂苯并噻唑的关键转化过程及机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
陆基水产养殖微塑料及添加剂的转化机制与释放动力学
- 批准号:42377373
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于改进鱼类PBTK模型-体外体内外推方法探究有害塑料添加剂的生物迁移转化机制与生态危害
- 批准号:42377275
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微塑料中典型有害添加剂在土壤环境中的释放-迁移-转化机理研究
- 批准号:22376094
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
饲用有机铬在粪污处理中的转化及其环境响应
- 批准号:2023JJ30306
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
页岩气开采过程中典型有机添加剂的降解转化及机理研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
典型可生物降解聚乳酸微塑料转运添加剂于体内富集、转化规律及毒性评估
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
木质素功能材料的构建及其催化生物质衍生物转化为高品质燃料添加剂的研究
- 批准号:2021JJ40436
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
活性材料表面功能分子嫁接与原位转化降低锂电对电解液和添加剂的依赖性
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Transforming museum industry to cryopreserve Australia’s diverse wildlife
改造博物馆行业以冷冻保存澳大利亚多样化的野生动物
- 批准号:
LP230100359 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Linkage Projects
Transforming Australian cities through net-zero transit activated corridors
通过净零交通激活走廊改造澳大利亚城市
- 批准号:
DE240101072 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Discovery Early Career Researcher Award
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
- 批准号:
BB/Y008472/1 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Research Grant
Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
- 批准号:
2333305 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
CAP: AI-Ready Institution Transforming Tomorrow's Research and Education with AI Focused on Health and Security (Jag-AI)
CAP:人工智能就绪机构通过专注于健康和安全的人工智能改变未来的研究和教育 (Jag-AI)
- 批准号:
2334243 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
Transforming child mental health: co-designing, building and evaluating a digitally enabled, personalised, prevention pathway
改变儿童心理健康:共同设计、构建和评估数字化、个性化的预防途径
- 批准号:
MR/X034917/1 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Fellowship
STEMcyclists: Black and Brown Youth Transforming Science and Engineering via Bikes
STEMcyclists:黑人和棕色人种青年通过自行车改变科学和工程
- 批准号:
2314260 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Continuing Grant
Planning: Pathways to Transforming Arctic Science Programs
规划:北极科学项目转型之路
- 批准号:
2421373 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Standard Grant
Trust in Pacific Healthcare: Transforming research, policy and practice
对太平洋医疗保健的信任:改变研究、政策和实践
- 批准号:
DP230102606 - 财政年份:2024
- 资助金额:
$ 28.41万 - 项目类别:
Discovery Projects