CPS: Medium: A Secure, Trustworthy, and Reliable Air Quality Monitoring System for Smart and Connected Communities
CPS:Medium:面向智能互联社区的安全、值得信赖且可靠的空气质量监测系统
基本信息
- 批准号:1931871
- 负责人:
- 金额:$ 119.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A critical application of smart technologies is a smart, connected, and secured environmental monitoring network that can help administrators and researchers find better ways to incorporate evidence and data into public decision-making related to the environment. In this project, the investigators will establish a secure, trustworthy and reliable air quality monitoring network system using densely deployed low-cost sensors in and around the city of Orlando, Florida, to better inform development of pollution mitigation strategies in the region. Access to the urban-scale air quality sensor data and forecasts can have a positive social impact on environmental justice, public health, and sustainability initiatives. The investigators will incorporate the outcome of the project into courses on computer and network security and privacy, mobile computing, environmental sciences and engineering, and social science. The proposed work will provide hands-on exercises, research, and educational opportunities for undergraduate, graduate students and K-12 students.The objectives of this project include performing remote low-cost sensor calibration, drift and malfunction detection. An innovative modeling method will be developed to perform remote calibration for low-cost PM2.5 sensors. A triple-sensor system will be developed, employing an operational statistical method that cross-evaluates sensor measurement data every hour to identify potential sensor drifts and malfunctions. The project team will build a trustworthy air quality monitoring network. A trusted boot strategy will be developed to ensure the sensor firmware is genuine at bootstrapping, performing dynamic analysis of states of the system, sending the measurement to a verifier for remote attestation, and accepting commands from the verifier to act on violations. The team will also create an accurate deep learning-based air quality prediction system based on a novel two-stage semi-supervised learning framework from noisy and mixed-labeled sensor big data. Social scientists on the team will conduct a social behavioral study of air quality monitoring and prediction. This project emphasizes sustainable empowerment of residents through processes of education on air quality and training on data utilization and advocacy. The project goes beyond passive citizen science to enable citizens to become advocates for their interests to increase not only outside air quality but also the overall quality of life of citizens in the community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能技术的一个关键应用是智能、互联和安全的环境监测网络,可以帮助管理人员和研究人员找到更好的方法,将证据和数据纳入与环境相关的公共决策。在该项目中,研究人员将在佛罗里达州奥兰多市及其周边地区使用密集部署的低成本传感器建立一个安全、可信和可靠的空气质量监测网络系统,以更好地为该地区的污染缓解战略提供信息。获取城市规模的空气质量传感器数据和预测可以对环境正义、公共卫生和可持续发展倡议产生积极的社会影响。调查人员将把该项目的成果纳入计算机和网络安全与隐私、移动的计算、环境科学与工程以及社会科学等课程。拟议的工作将提供动手练习,研究和教育机会,本科生,研究生和K-12 students.The objectives of this project including performing remote low-cost sensor calibration,drift and malfunction detection.将开发一种创新的建模方法,用于对低成本PM2.5传感器进行远程校准。将开发一个三传感器系统,采用操作统计方法,每小时交叉评估传感器测量数据,以确定潜在的传感器漂移和故障。项目组将建立一个值得信赖的空气质量监测网络。将开发可信靴子策略,以确保传感器固件在引导时是真实的,执行系统状态的动态分析,将测量结果发送到验证器进行远程认证,并接受来自验证器的命令以对违规行为采取行动。该团队还将创建一个准确的基于深度学习的空气质量预测系统,该系统基于一个新颖的两阶段半监督学习框架,来自嘈杂和混合标记的传感器大数据。团队中的社会科学家将对空气质量监测和预测进行社会行为研究。该项目强调通过开展空气质量教育和数据利用及宣传培训,可持续地增强居民的权能。该项目超越了被动的公民科学,使公民成为他们利益的倡导者,不仅提高外部空气质量,而且提高社区公民的整体生活质量。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DA3: Dynamic Additive Attention Adaption for Memory-Efficient On-Device Multi-Domain Learning
DA3:动态加性注意力适应,实现内存高效的设备上多域学习
- DOI:10.1109/cvprw56347.2022.00295
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Li' Rakin;Fan, Deliang
- 通讯作者:Fan, Deliang
XBM: A Crossbar Column-wise Binary Mask Learning Method for Efficient Multiple Task Adaption
XBM:一种用于高效多任务自适应的 Crossbar 列二进制掩码学习方法
- DOI:10.1109/asp-dac52403.2022.9712508
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Fan;Yang, Li;Meng, Jian;Cao, Yu Kevin;Seo, Jae-sun;Fan, Deliang
- 通讯作者:Fan, Deliang
KSM: Fast Multiple Task Adaption via Kernel-wise Soft Mask Learning
KSM:通过内核软掩模学习实现快速多任务适应
- DOI:10.1109/cvpr46437.2021.01363
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yang, Li;He, Zhezhi;Zhang, Junshan;Fan, Deliang
- 通讯作者:Fan, Deliang
Quantifying the impact of daily mobility on errors in air pollution exposure estimation using mobile phone location data
- DOI:10.1016/j.envint.2020.105772
- 发表时间:2020-08-01
- 期刊:
- 影响因子:11.8
- 作者:Yu, Xiaonan;Ivey, Cesunica;Zheng, Junyu
- 通讯作者:Zheng, Junyu
RepNet: Efficient On-Device Learning via Feature Reprogramming
- DOI:10.1109/cvpr52688.2022.01196
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Li Yang;A. S. Rakin;Deliang Fan
- 通讯作者:Li Yang;A. S. Rakin;Deliang Fan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haofei Yu其他文献
MMOE: Mixture of Multimodal Interaction Experts
MMOE:多模态交互专家的混合体
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Haofei Yu;P. Liang;R. Salakhutdinov;Louis - 通讯作者:
Louis
Erratum to: On the potential of iPhone significant location data to characterize individual mobility for air pollution health studies
- DOI:
10.1007/s11783-022-1556-1 - 发表时间:
2022-07-11 - 期刊:
- 影响因子:6.400
- 作者:
Elizabeth Eastman;Kelly A. Stevens;Cesunica Ivey;Haofei Yu - 通讯作者:
Haofei Yu
Counting the Bugs in ChatGPT's Wugs: A Multilingual Investigation into the Morphological Capabilities of a Large Language Model
计算 ChatGPT 的 Wugs 中的错误:对大型语言模型的形态能力的多语言调查
- DOI:
10.48550/arxiv.2310.15113 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Leonie Weissweiler;Valentin Hofmann;Anjali Kantharuban;Anna Cai;Ritam Dutt;Amey Hengle;Anubha Kabra;Atharva Kulkarni;Abhishek Vijayakumar;Haofei Yu;Hinrich Schütze;Kemal Oflazer;David R. Mortensen - 通讯作者:
David R. Mortensen
Protective effect of carnosic acid and its semisynthetic derivatives against H2O2-induced neurotoxicity
鼠尾草酸及其半合成衍生物对H2O2诱导的神经毒性的保护作用
- DOI:
10.1016/j.phytol.2018.06.014 - 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Liang Xinxin;Haofei Yu;Weiyan Hu;Zhang Lanchun;Weimin Yang;C. Jin;D. Liu;Rongping Zhang - 通讯作者:
Rongping Zhang
Exploring uncertainties in the integrated mass enhancement method for remote sensing retrievals of methane emissions
探究甲烷排放遥感反演的综合质量增强方法中的不确定性
- DOI:
10.1016/j.wasman.2025.114759 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:7.100
- 作者:
Md.Hasibul Hasan;Poyu Zhang;Jiannan Chen;Guoliang Shi;Tarek Abichou;Haofei Yu - 通讯作者:
Haofei Yu
Haofei Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312206 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Continuing Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320972 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320975 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Secure and Formally-verified Low-level Languages
SaTC:核心:中:安全且经过正式验证的低级语言
- 批准号:
2247088 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320973 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312207 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312448 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320974 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Secure and Trustworthy Cyberphysical Microfluidic Systems
合作研究:SaTC:核心:中等:安全可信的网络物理微流体系统
- 批准号:
2313296 - 财政年份:2023
- 资助金额:
$ 119.81万 - 项目类别:
Standard Grant