I-Corps: Using Artificial Social Intelligence for Legal Team Assistants
I-Corps:使用人工智能作为法律团队助理
基本信息
- 批准号:1933260
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is to substantially transform the legal system and processes by incorporating Artificial Intelligence (AI) into the legal process of discovering and analyzing information. This project provides the legal community with AI tools that will enable them to adapt to a fast-changing information landscape (i.e., by procuring, organizing and extracting actionable knowledge from large amounts of documents and data during the pre-trial procedure of discovery), and to leverage the most recent advances on human-machine teaming for an effective delivery of AI-assisted discovery to legal teams. The target customers are practitioners at law firms, corporations, government agencies, and academic researchers and who perform qualitative data analysis on large volumes of unstructured data. This technology potentially aids the case discovery process in the legal field that often involves large amounts of electronically stored information in preparation for litigation.This I-Corps project is based on advance machine learning based algorithms and social teaming algorithms used to improve the efficiency of qualitative data analysis and the effectiveness of data result delivery to legal teams. The project explores the use of artificial social intelligence-based algorithms that automate the analysis of large volumes of unstructured text data to gain insights to the patterns within the data more efficiently, with better individual and inter-coder reliability, and within significantly shorter processing time. The results of this analysis will be delivered to legal teams using computer-based agents that observe their surroundings, infer their teammates goals and assist the legal team by providing information at the appropriate level and time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是通过将人工智能(AI)纳入发现和分析信息的法律的过程来实质性地改变法律的系统和过程。该项目为法律的社区提供人工智能工具,使他们能够适应快速变化的信息环境(即,通过在预审发现程序期间从大量文件和数据中获取,组织和提取可操作的知识),并利用人机合作的最新进展,为法律的团队提供人工智能辅助发现。目标客户是律师事务所、企业、政府机构和学术研究人员的从业人员,他们对大量非结构化数据进行定性数据分析。该技术可能有助于法律的领域的案件发现过程,该领域通常涉及大量电子存储的信息以准备诉讼。该I-Corps项目基于先进的机器学习算法和社交团队算法,用于提高定性数据分析的效率和向法律的团队交付数据结果的有效性。该项目探索使用基于人工社会智能的算法,自动分析大量非结构化文本数据,以更有效地洞察数据中的模式,具有更好的个体和编码器间的可靠性,并在显着更短的处理时间内。该分析的结果将通过基于计算机的代理人提供给法律的团队,这些代理人观察他们的周围环境,推断他们的队友的目标,并通过在适当的级别和时间提供信息来协助法律的团队。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Garibay其他文献
Accelerating green growth: The effect of technological innovation on production capabilities spillovers in developing economies
加速绿色增长:技术创新对发展中经济体生产能力溢出的影响
- DOI:
10.1016/j.jclepro.2024.144159 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:10.000
- 作者:
Hanin Alhaddad;Seyyedmilad Talebzadehhosseini;Ivan Garibay - 通讯作者:
Ivan Garibay
Erratum to: Dario Floreano and Claudio Mattiussi: Bio-inspired artificial intelligence: theories, methods, and technologies
- DOI:
10.1007/s10710-010-9123-0 - 发表时间:
2010-09-02 - 期刊:
- 影响因子:0.900
- 作者:
Ivan Garibay - 通讯作者:
Ivan Garibay
Controlling the Misinformation Diffusion in Social Media by the Effect of Different Classes of Agents
通过不同类别代理的作用控制社交媒体中的错误信息扩散
- DOI:
10.48550/arxiv.2401.11524 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ali Khodabandeh Yalabadi;Mehdi Yazdani;Sina Abdidizaji;Ivan Garibay;O. Garibay - 通讯作者:
O. Garibay
Agent-Based Modeling of C. Difficile Spread in Hospitals: Assessing Contribution of High-Touch vs. Low-Touch Surfaces and Inoculations' Containment Impact
基于主体的艰难梭菌在医院传播的建模:评估高接触与低接触表面的贡献以及接种的遏制影响
- DOI:
10.48550/arxiv.2401.11656 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sina Abdidizaji;Ali Khodabandeh Yalabadi;Mehdi Yazdani;O. Garibay;Ivan Garibay - 通讯作者:
Ivan Garibay
Dario Floreano and Claudio Mattiussi (eds): Bio-inspired artificial intelligence: theories, methods, and technologies
- DOI:
10.1007/s10710-010-9104-3 - 发表时间:
2010-04-07 - 期刊:
- 影响因子:0.900
- 作者:
Ivan Garibay - 通讯作者:
Ivan Garibay
Ivan Garibay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Garibay', 18)}}的其他基金
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
- 批准号:
2331319 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Cooperative Agreement
EAGER: Defining and Measuring University Economic Engagement: The Association of Public and Land Grant Universities Innovation and Economic Prosperity (APLU-IEP) Data Platform
EAGER:定义和衡量大学经济参与度:公立大学和赠地大学创新与经济繁荣协会 (APLU-IEP) 数据平台
- 批准号:
1738956 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Using artificial intelligence to identify spatio-temporal mechanisms of cell competition
利用人工智能识别细胞竞争的时空机制
- 批准号:
BB/Y002709/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
- 批准号:
10091110 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
- 批准号:
MR/Y503472/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
SBIR Phase II: A Manufacturing Monitoring System Using Sound Spectrograms and Artificial Intelligence
SBIR 第二阶段:使用声谱图和人工智能的制造监控系统
- 批准号:
2335395 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Cooperative Agreement
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
- 批准号:
2418277 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342748 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342746 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
- 批准号:
2336079 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant