CBMS Conference: K-theory of Operator Algebras and Its Applications to Geometry and Topology
CBMS 会议:算子代数的 K 理论及其在几何和拓扑中的应用
基本信息
- 批准号:1933327
- 负责人:
- 金额:$ 3.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for the NSF/CBMS regional conference: K-theory of operator algebras and its applications to geometry and topology, to be held during August 17-21, 2020 at the University of Puerto Rico at Rio Piedras. The principal speaker is Guoliang Yu, Powell Chair in Mathematics and University Distinguished professor at Texas A&M University. There will also be lectures on complementary topics delivered by invited speakers. In the last decade, there have been exciting developments in this field of research with applications to several areas of mathematics. The principle speaker and his collaborators have made significant contributions to introducing and studying new concepts. The conference lectures will highlight the recent advances, identify promising new research directions, and help a diverse group of students and early career mathematicians navigate to the frontier of this exciting yet challenging research field. K-theory is a unifying theme in several important areas of mathematics including operator algebras, geometry, topology, and number theory. K-groups are receptacles for both primary and secondary invariants of elliptic operators. Guoliang Yu and his coauthors have made several significant contributions to introducing and studying these invariants and developing new tools such as quantitative/controlled K-theory and localization algebra. Yu, Weinberger, and Xie recently solved the long standing open problem regarding additivity of higher rho invariants. This result has important applications to non-rigidity of manifolds. Yu-Guentner-Tessera developed a theory of geometric complexity to prove the stable Borel conjecture on rigidity of manifolds when the geometric complexity is finite. This CBMS lecture series will be designed to be a friendly introduction to these recent developments. For more information, see the conference website- https://math.uprrp.edu/nfs_cbms_uprrp/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为NSF/CBMS区域会议提供支持:算子代数的K-理论及其在几何和拓扑学中的应用,将于2020年8月17日至21日在里约热内卢的波多黎各大学举行。 主讲人是德州农工大学鲍威尔数学系主任、大学特聘教授余国梁。 还将有关于特邀演讲者提供的补充主题的讲座。在过去的十年中,有令人兴奋的发展,在这一领域的研究与应用的几个领域的数学。主讲人和他的合作者在介绍和研究新概念方面做出了重大贡献。 会议讲座将突出最新的进展,确定有前途的新的研究方向,并帮助学生和早期职业数学家导航到这个令人兴奋但具有挑战性的研究领域的前沿。K-理论是数学中几个重要领域的统一主题,包括算子代数、几何、拓扑和数论。K-群是椭圆算子的主不变量和次不变量的容器。Guoliang Yu和他的合著者在引入和研究这些不变量以及开发新工具(如定量/受控K理论和局部化代数)方面做出了一些重大贡献。 Yu,Weinberger和Xie最近解决了长期存在的关于较高rho不变量的可加性的开放问题。 这一结果对流形的非刚性有重要的应用。Yu-Guentner-Tessera发展了一个几何复杂性理论,证明了当几何复杂性有限时,关于流形刚性的稳定Borel猜想。 这CBMS系列讲座将被设计成一个友好的介绍这些最新的发展。 欲了解更多信息,请参阅会议网站-https://math.uprrp.edu/nfs_cbms_uprrp/This奖反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guihua Gong其他文献
Expression, purification, and activity of ActhiS, a thiazole biosynthesis enzyme from Acremonium chrysogenum
ActhiS(一种产黄顶孢霉的噻唑生物合成酶)的表达、纯化和活性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhihui Song;Jie Pan;Liping Xie;Guihua Gong;Shuang;Wei Zhang;Youjia Hu - 通讯作者:
Youjia Hu
A Reduction Theorem for AH Algebras with the Ideal Property
具有理想性质的AH代数的约简定理
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1
- 作者:
Guihua Gong;Chunlan Jiang;Liangqing Li;Cornel Pasnicu - 通讯作者:
Cornel Pasnicu
The Expression of Recombinant Human Serum Albumin in the Mammary Gland of Transgenic Mice
重组人血清白蛋白在转基因小鼠乳腺中的表达
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Guihua Gong;Shuang;Xiaoting Huang;Liqi Xie;Wei Zhang;Lei Xu;Youjia Hu - 通讯作者:
Youjia Hu
Expression, purification, and characterization of the Degludec precursor DesB30
- DOI:
10.1016/j.pep.2019.04.010 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:
- 作者:
Junyi Wu;Guihua Gong;Shu Han;Wei Zhang;Youjia Hu;Liping Xie - 通讯作者:
Liping Xie
On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem THANKSREF="*" ID="*"The research of the first author was supported by NSERC of Canada. The research of the second author was supported by NSF grants DMS 9401515, 9622250, 9970840 and 0200739, and by Chinese NSF grant 10628101. The research of the third author was supported by an NSERC Postdoctoral Fellowship, and NSF grants DMS 9970840 and 0200739. This material is also based upon work supported by, or in part by, the U.S. Army Research Office under grant number DAAD19-00-1-0152 for the second and the third authors.
- DOI:
10.1007/s00222-006-0033-y - 发表时间:
2007-03-07 - 期刊:
- 影响因子:3.600
- 作者:
George A. Elliott;Guihua Gong;Liangqing Li - 通讯作者:
Liangqing Li
Guihua Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guihua Gong', 18)}}的其他基金
C*-algebras: structure, classification and applications
C*-代数:结构、分类和应用
- 批准号:
0701150 - 财政年份:2007
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
Simple C*-Algebras and Dynamical Systems: Classification and Applications
简单 C* 代数和动力系统:分类和应用
- 批准号:
0200739 - 财政年份:2002
- 资助金额:
$ 3.8万 - 项目类别:
Continuing Grant
Classification of Amenable C*-Algebras and Applications
适合的 C* 代数分类及其应用
- 批准号:
9970840 - 财政年份:1999
- 资助金额:
$ 3.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: On the Classification of the Simple, Stably Finite, Separable, Amenable C-Algebras
数学科学:关于简单、稳定有限、可分离、适用的 C 代数的分类
- 批准号:
9622250 - 财政年份:1996
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
相似海外基金
CBMS Conference on Topological Data Analysis and Persistence Theory
CBMS拓扑数据分析与持久性理论会议
- 批准号:
2132497 - 财政年份:2021
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
- 批准号:
1933548 - 财政年份:2020
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
CBMS Conference: L-Functions and Multiplicative Number Theory
CBMS 会议:L 函数和乘法数论
- 批准号:
1836382 - 财政年份:2018
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
CBMS Conference: Nonlocal Dynamics--Theory, Computation and Applications
CBMS 会议:非局域动力学——理论、计算与应用
- 批准号:
1642545 - 财政年份:2017
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
CBMS Conference: Tensors and Their Uses in Approximation Theory, Quantum Information Theory, and Geometry
CBMS 会议:张量及其在逼近论、量子信息论和几何中的应用
- 批准号:
1642659 - 财政年份:2017
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
- 批准号:
1642636 - 财政年份:2016
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference on Higher Representation Theory-June 19-23, 2014
NSF/CBMS 更高表征理论区域会议 - 2014 年 6 月 19-23 日
- 批准号:
1347289 - 财政年份:2014
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
CBMS Conference: Introduction to the theory of valuations on convex sets
CBMS 会议:凸集估值理论简介
- 批准号:
1444411 - 财政年份:2014
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -- Inverse Scattering Theory for Transmission Eigenvalues -- May 27-May 31, 2014
NSF/CBMS 数学科学区域会议 -- 传输特征值的逆散射理论 -- 2014 年 5 月 27 日至 5 月 31 日
- 批准号:
1347475 - 财政年份:2014
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
- 批准号:
1137952 - 财政年份:2012
- 资助金额:
$ 3.8万 - 项目类别:
Standard Grant