MIP: GlycoMIP - Automating the Synthesis of Rationally Designed Glycomaterials
MIP:GlycoMIP - 自动化合成合理设计的糖材料
基本信息
- 批准号:1933525
- 负责人:
- 金额:$ 2290万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical DescriptionCarbohydrates are the most abundant class of organic compounds on Earth and are found in all main macromolecular building blocks of life, including nucleic acids, proteins and lipids. Glycomaterials are carbohydrate-based polymeric materials with diverse biological functions including biochemical signaling, structural support, and water retention. Because of their complex molecular structures, glycomaterials are more difficult to design, create, and characterize than other biopolymers. There are no widely available methods for their large-scale synthesis and rapid characterization. These scientific and technological challenges hinder our understanding of these ubiquitous materials, vitally important to advancing sustainable materials, renewable energy technologies, and human health. Anchored at Virginia Tech and the University of Georgia, GlycoMIP, an NSF Materials Innovation Platform, accelerates discovery in glycomaterials science and technology through a unique national user facility and leading-edge in-house research and advances the implementation of the Materials Genome Initiative paradigm shift in materials development. The GlycoMIP user facility supports researchers from academia, industry, and government research institutions through access to state-of-the-art equipment, world-class services, and technical data for the synthesis, characterization, and modeling of bioinspired glycomaterials at the molecular, supramolecular, and macroscopic (bulk property) levels. Strengthened by world-leading expertise at Brandeis University, Rensselaer Polytechnic Institute, and the University of North Carolina, the in-house research of GlycoMIP employs efficient convergence of physical sciences, engineering, computation, and life sciences to achieve scientific and technological breakthroughs in scalable synthesis, high-throughput characterization, and mesoscale modeling of glycomaterials. GlycoMIP is a nationwide collaboratory, where members of the glycomaterials community share tools, samples, data, software, and know-how for the collective advancement of glycomaterials science and technology. GlycoMIP offers short courses, hands-on training courses, and tutorials on glycomaterials science and technology topics to users and potential users and trains the next generation of glycomaterials researchers in accelerated materials development.Technical DescriptionOpen to external researchers from across the nation, the GlycoMIP user facility at Virginia Tech and the University of Georgia provides access to unique experimental and computational tools for glycomaterials synthesis, characterization, and modeling and facilitates Materials Genome Initiative approaches to materials research and development. These include automated glycan synthesizers for de novo glycan synthesis, a mass spectrometry (MS) imaging system for in-situ glycan analysis, high-resolution, multi-stage MS systems for in-depth glycan structural analysis, surface plasmon resonance imaging and biolayer interferometry systems for high-throughput quantitation of binding events, two vibrational optical activity spectrometers for analysis of solution-state conformations, and a rheometer for the characterization of glycan-based solutions and gels. The facility also offers users multiple open-access databases and online services to facilitate automation of MS and nuclear magnetic resonance spectral assignments, provide access to molecular modeling, and enable optimization of automated glycan synthesis. The in-house research of GlycoMIP addresses the grand challenge of rational molecular design of glycomaterials with predefined solution- and gel-state properties, focusing specifically on accelerated development of glycomaterials with predicted binding, conformational, or self-assembly behaviors through computer-guided design of primary structure and molecular architecture.This Materials Innovation Platform award is jointly funded by the Division of Materials Research (DMR) and Division of Molecular and Cellular Biosciences (MCB).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
碳水化合物是地球上最丰富的一类有机化合物,存在于生命的所有主要大分子构建块中,包括核酸,蛋白质和脂质。糖材料是具有多种生物功能的碳水化合物基聚合物材料,包括生物化学信号传导、结构支持和保水。由于其复杂的分子结构,糖材料比其他生物聚合物更难设计,创建和表征。目前还没有广泛可用的方法来进行大规模合成和快速表征。这些科学和技术挑战阻碍了我们对这些无处不在的材料的理解,而这些材料对推进可持续材料、可再生能源技术和人类健康至关重要。GlycoMIP是NSF材料创新平台,位于弗吉尼亚理工大学和格鲁吉亚大学,通过独特的国家用户设施和领先的内部研究加速了糖材料科学和技术的发现,并推动了材料基因组计划在材料开发中的范式转变。GlycoMIP用户设施支持来自学术界,工业界和政府研究机构的研究人员通过访问最先进的设备,世界一流的服务和技术数据,用于在分子,超分子和宏观(整体性质)水平上合成,表征和建模生物启发的糖材料。在布兰代斯大学、伦斯勒理工学院和北卡罗来纳州大学的世界领先专业知识的支持下,GlycoMIP的内部研究采用了物理科学、工程、计算和生命科学的有效融合,以实现糖材料的可扩展合成、高通量表征和中尺度建模方面的科学和技术突破。GlycoMIP是一个全国性的合作实验室,糖材料社区的成员分享工具,样品,数据,软件和专有技术,共同推进糖材料科学和技术。GlycoMIP为用户和潜在用户提供关于糖材料科学和技术主题的短期课程,实践培训课程和教程,并培训下一代糖材料研究人员加速材料开发。技术说明向来自全国各地的外部研究人员开放,弗吉尼亚理工大学和格鲁吉亚大学的GlycoMIP用户设施提供了对糖物质的独特实验和计算工具的访问合成,表征和建模,并促进材料基因组计划的方法,材料的研究和开发。这些包括用于聚糖从头合成的自动化聚糖合成仪、用于原位聚糖分析的质谱(MS)成像系统、用于深入聚糖结构分析的高分辨率多级MS系统、用于结合事件的高通量定量的表面等离子体共振成像和生物层干涉测量系统、用于溶液状态构象分析的两个振动光学活性光谱仪、以及用于表征聚糖基溶液和凝胶的流变仪。该设施还为用户提供多个开放访问数据库和在线服务,以促进MS和核磁共振光谱分配的自动化,提供分子建模,并实现自动化聚糖合成的优化。GlycoMIP的内部研究解决了具有预定义溶液和凝胶状态特性的糖材料的合理分子设计的巨大挑战,特别关注加速开发具有预测结合,构象,通过计算机引导的一级结构和分子结构的设计来实现自组装行为。该材料创新平台奖由材料研究部(DMR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(49)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of the pharmacokinetic properties of synthetic heparan sulfate oligosaccharides.
合成硫酸乙酰肝素寡糖的药代动力学特性的研究。
- DOI:10.1093/glycob/cwac068
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Arnold,Katelyn;Wang,Zhangjie;Lucas,Andrew;Zamboni,William;Xu,Yongmei;Liu,Jian
- 通讯作者:Liu,Jian
Pregnancy enables antibody protection against intracellular infection.
- DOI:10.1038/s41586-022-04816-9
- 发表时间:2022-06
- 期刊:
- 影响因子:64.8
- 作者:
- 通讯作者:
The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar.
- DOI:10.1038/s41564-021-01003-w
- 发表时间:2021-12
- 期刊:
- 影响因子:28.3
- 作者:DeHart TG;Kushelman MR;Hildreth SB;Helm RF;Jutras BL
- 通讯作者:Jutras BL
A Cluster Sequencing Strategy To Determine the Consensus Affinity Domains in Heparin for Its Binding to Specific Proteins
用于确定肝素与特定蛋白质结合的共有亲和域的聚类测序策略
- DOI:10.1021/acs.analchem.2c03267
- 发表时间:2022-10-02
- 期刊:
- 影响因子:7.4
- 作者:Shi,Deling;Sheng,Anran;Chi,Lianli
- 通讯作者:Chi,Lianli
Using heparan sulfate octadecasaccharide (18-mer) as a multi-target agent to protect against sepsis.
使用硫酸乙酰肝素十八糖(18-mer)作为多靶点药物来预防败血症。
- DOI:10.1073/pnas.2209528120
- 发表时间:2023-01-24
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maren Roman其他文献
Impacts of cycles of a novel low-pressure homogenization process on cellulose nanofibrils (CNF) as a sustainable packaging film material
一种新型低压均质化工艺循环对作为可持续包装薄膜材料的纤维素纳米纤维(CNF)的影响
- DOI:
10.1016/j.carpta.2025.100739 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.500
- 作者:
Belladini Lovely;Young-Teck Kim;Haibo Huang;Audrey Zink-Sharp;Maren Roman - 通讯作者:
Maren Roman
Maren Roman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maren Roman', 18)}}的其他基金
RAPID: Rational Design of Biomimetic Virus-Trapping Polymers
RAPID:仿生病毒捕获聚合物的合理设计
- 批准号:
2034567 - 财政年份:2020
- 资助金额:
$ 2290万 - 项目类别:
Standard Grant
Chitosan-Cellulose Ionic Complex for Oral Drug Delivery
用于口服药物递送的壳聚糖-纤维素离子复合物
- 批准号:
0907567 - 财政年份:2009
- 资助金额:
$ 2290万 - 项目类别:
Continuing Grant














{{item.name}}会员




