GCR: Collaborative Research: The Future of Quantitative Research in Social Science

GCR:协作研究:社会科学定量研究的未来

基本信息

项目摘要

This Growing Convergence Research project aims to develop algorithms and tools to better use social media data and other new forms of publicly available text data to advance understanding of human behavior and society. The research team will integrate across the social, behavioral, and computer sciences to create and adapt computer algorithms and data mining methods in ways that adhere to the design structures, measurement rigor and ethical protections of social science. While much research is emerging in this space, no established best practices exist for designing proper micro- and macro-level studies involving social media and other open-source text data. The research team, representing the breadth of behavioral/social science and computer science, will develop and test methodologies for sampling, validating, and analyzing social media data so that social scientists can easily interpret and generalize from them.Specifically, this project will (1) develop a detailed, hybrid methodology (Iterative Method for Social Media Research - IMSMR) that integrates relevant components of existing social science methodologies with relevant components of the knowledge discovery process to enhance research practices in both social and computer science fields; (2) use IMSMR to establish guidelines for using an array of different social media data to answer questions across different social and data science disciplines; (3) test and refine the methodology and guidelines on different research exemplars that spans multiple social, behavioral, and economic disciplines; and (4) develop a shared text analytic research portal that enables social scientists to generate structured variables using state of the art natural language processing and data mining that adhere to the validity and reliability standards of social science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个不断增长的融合研究项目旨在开发算法和工具,以更好地利用社交媒体数据和其他新形式的公开文本数据,以促进对人类行为和社会的理解。该研究团队将整合社会,行为和计算机科学,以遵循社会科学的设计结构,测量严格性和道德保护的方式创建和调整计算机算法和数据挖掘方法。虽然在这一领域出现了许多研究,但在设计涉及社交媒体和其他开源文本数据的适当微观和宏观研究方面,还没有既定的最佳实践。该研究团队代表了行为/社会科学和计算机科学的广度,将开发和测试用于采样,验证和分析社交媒体数据的方法,以便社会科学家可以轻松地对其进行解释和概括。具体而言,该项目将(1)开发详细的,混合方法(社交媒体研究的迭代方法- IMSMR)将现有社会科学方法的相关组成部分与知识发现过程的相关组成部分相结合,以加强社会科学和计算机科学领域的研究实践;(2)使用IMSMR建立使用一系列不同社交媒体数据来回答不同社会和数据科学学科问题的指导方针;(3)测试和完善跨多个社会,行为和经济学科的不同研究范例的方法和指导方针;以及(4)开发一个共享的文本分析研究门户网站,使社会科学家能够使用最先进的自然语言处理和数据挖掘来生成结构化变量,这些变量符合有效性,社会科学的可靠性标准。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analyzing the impact of missing values and selection bias on fairness
分析缺失值和选择偏差对公平性的影响
Text Analytic Research Portals: Supporting Large-Scale Social Science Research
文本分析研究门户:支持大规模社会科学研究
  • DOI:
    10.1109/bigdata52589.2021.9671696
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Singh, Lisa;Padden, Colton;Davis-Kean, Pamela;David, Rabin;Marwadi, Virinche;Ren, Yiqing;Vanarsdall, Rebecca
  • 通讯作者:
    Vanarsdall, Rebecca
Students or Mechanical Turk: Who Are the More Reliable Social Media Data Labelers? [Students or Mechanical Turk: Who Are the More Reliable Social Media Data Labelers?]
学生或机械土耳其人:谁是更可靠的社交媒体数据标签者?
  • DOI:
    10.5220/0011278600003269
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Singh, Lisa;Vanarsdall, Rebecca;Wang, Yanchen;Gresenz, Carole
  • 通讯作者:
    Gresenz, Carole
Social Media Data - Our Ethical Conundrum. A Quarterly bulletin of the IEEE Computer Society Technical Committee on Database Engineering
社交媒体数据 - 我们的道德难题。
Identifying High-Quality Training Data for Misinformation Detection [Identifying High-Quality Training Data for Misinformation Detection]
识别用于错误信息检测的高质量训练数据 [识别用于错误信息检测的高质量训练数据]
  • DOI:
    10.5220/0012089000003541
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haber, Jaren;Kawintiranon, Kornraphop;Singh, Lisa;Chen, Alexander;Pizzo, Aidan;Pogrebivsky, Anna;Yang, Joyce
  • 通讯作者:
    Yang, Joyce
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ceren Budak其他文献

Indexing theory during an emerging health crisis: how U.S. TV news indexed elite perspectives and amplified COVID-19 misinformation
新出现的健康危机期间的索引理论:美国电视新闻如何索引精英观点并放大 COVID-19 错误信息
GeoWatch : Online detection of Geo-Correlated Information Trends In Social Networks
GeoWatch:社交网络中地理相关信息趋势的在线检测
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ceren Budak;T. Georgiou;D. Agrawal;A. E. Abbadi
  • 通讯作者:
    A. E. Abbadi
Data Acquisition, Sampling, and Data Preparation Considerations for Quantitative Social Science Research Using Social Media Data
使用社交媒体数据进行定量社会科学研究的数据采集、采样和数据准备注意事项
  • DOI:
    10.31234/osf.io/k6vyj
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zeina Mneimneh;Josh Pasek;Lisa Singh;R. Best;L. Bode;E. Bruch;Ceren Budak;P. Davis‐Kean;K. Donato;N. Ellison;Gelman A;E. Groshen;Libby Hemphill;Will Hobbs;Jensen Jb;G. Karypis;J. Ladd;A. O'hara;T. Raghunathan;P. Resnik;Rebecca Ryan;S. Soroka;M. Traugott;Brady T. West;Stefan Wojcik
  • 通讯作者:
    Stefan Wojcik
Intermedia Agenda Setting during the 2016 and 2020 U.S. Presidential Elections
2016年和2020年美国总统选举期间的跨媒体议程设置
The Dynamics of (Not) Unfollowing Misinformation Spreaders
取消关注错误信息传播者的动态
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Ashkinaze;Eric Gilbert;Ceren Budak
  • 通讯作者:
    Ceren Budak

Ceren Budak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ceren Budak', 18)}}的其他基金

CAREER: Large-Scale Examination of Problematic Online Behaviors and Their Regulators
职业:对有问题的在线行为及其监管者的大规模检查
  • 批准号:
    2045432
  • 财政年份:
    2021
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
CHS: Small: Systematic Comparative and Historical Analysis Framework for Social Movements
CHS:小型:社会运动的系统比较和历史分析框架
  • 批准号:
    1815875
  • 财政年份:
    2018
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
  • 批准号:
    2426095
  • 财政年份:
    2024
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
  • 批准号:
    2317826
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317877
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317876
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
  • 批准号:
    2312326
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
  • 批准号:
    2317823
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317874
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Scaling-Up Transformative Adaptation through Socio-Agroclimatology
合作研究:GCR:通过社会农业气候学扩大变革性适应
  • 批准号:
    2317821
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317878
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Developing Integrated Agroecological Renewable Energy Systems through Convergent Research
合作研究:GCR:通过融合研究开发综合农业生态可再生能源系统
  • 批准号:
    2317983
  • 财政年份:
    2023
  • 资助金额:
    $ 129.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了