Collaborative Research: Knowledge Guided Machine Learning: A Framework for Accelerating Scientific Discovery

协作研究:知识引导机器学习:加速科学发现的框架

基本信息

  • 批准号:
    1934721
  • 负责人:
  • 金额:
    $ 66.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The success of machine learning (ML) in many applications where large-scale data is available has led to a growing anticipation of similar accomplishments in scientific disciplines. The use of data science is particularly promising in scientific problems involving processes that are not completely understood. However, a purely data-driven approach to modeling a physical process can be problematic. For example, it can create a complex model that is neither generalizable beyond the data on which it was trained nor physically interpretable. This problem becomes worse when there is not enough training data, which is quite common in science and engineering domains. A machine learning model that is grounded by explainable theories stands a better chance at safeguarding against learning spurious patterns from the data that lead to non-generalizable performance. This is especially important when dealing with problems that are critical and associated with high risks (e.g., extreme weather or collapse of an ecosystem). Hence, neither an ML-only nor a scientific knowledge-only approach can be considered sufficient for knowledge discovery in complex scientific and engineering applications. This project is developing novel techniques to explore the continuum between knowledge-based and ML models, where both scientific knowledge and data are integrated synergistically. Such integrated methods have the potential for accelerating discovery in a range of scientific and engineering disciplines. This project will train interdisciplinary scientists who are well versed in such methods and will disseminate results of the project via peer-reviewed publications, open-source software, and a series of workshops to engage the broader scientific community.This project aims to develop a framework that uses the unique capability of data science models to automatically learn patterns and models from data, without ignoring the treasure of accumulated scientific knowledge. Specifically, the project builds the foundations of knowledge-guided machine learning (KGML) by exploring several ways of bringing scientific knowledge and machine learning models together using pilot applications from four domains: aquatic ecodynamics, climate and weather, hydrology, and translational biology. These pilot applications were selected because they are at tipping points where knowledge-guided machine learning can have a transformative effect. KGML has the potential for providing scientists and engineers with new insights into their domains of interest and will require the development of innovative new machine learning approaches and architectures that can incorporate scientific principles. Scientific knowledge, KGML methods, and software developed in this project could potentially be extended to a wide range of scientific applications where mechanistic (also known as process-based) models are used.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)在许多可获得大规模数据的应用中的成功,导致人们越来越期待在科学学科中取得类似的成就。数据科学的使用在涉及尚未完全理解的过程的科学问题中特别有前途。然而,一个纯粹的数据驱动的方法来建模一个物理过程可能是有问题的。例如,它可以创建一个复杂的模型,该模型既不能在训练数据之外推广,也不能在物理上解释。当没有足够的训练数据时,这个问题变得更糟,这在科学和工程领域中非常常见。 基于可解释理论的机器学习模型更有可能防止从导致不可推广性能的数据中学习虚假模式。这在处理关键问题和与高风险相关的问题时尤其重要(例如,极端天气或生态系统崩溃)。 因此,在复杂的科学和工程应用中,无论是ML方法还是科学知识方法都不能被认为足以进行知识发现。该项目正在开发新技术,以探索基于知识的模型和ML模型之间的连续性,其中科学知识和数据协同集成。这种综合方法有可能在一系列科学和工程学科中加速发现。该项目将培养精通这些方法的跨学科科学家,并将通过同行评审的出版物、开源软件和一系列研讨会传播项目成果,以吸引更广泛的科学界参与。该项目旨在开发一个框架,利用数据科学模型的独特能力,从数据中自动学习模式和模型,而不忽视积累的科学知识的宝藏。具体而言,该项目通过探索将科学知识和机器学习模型结合在一起的几种方法,建立了知识引导机器学习(KGML)的基础,这些方法使用来自四个领域的试点应用程序:水生生态动力学,气候和天气,水文学和转化生物学。之所以选择这些试点应用程序,是因为它们正处于知识引导的机器学习可以产生变革性影响的临界点。 KGML有潜力为科学家和工程师提供对他们感兴趣领域的新见解,并将需要开发创新的新机器学习方法和架构,以融入科学原理。科学知识,KGML方法,在这个项目中开发的软件可能会扩展到广泛的科学应用,该项目是美国国家科学基金会利用数据革命(HDR)项目的一部分大创意活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting Water Temperature Dynamics of Unmonitored Lakes With Meta‐Transfer Learning
  • DOI:
    10.1029/2021wr029579
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    J. Willard;J. Read;A. Appling;S. Oliver;X. Jia;Vipin Kumar
  • 通讯作者:
    J. Willard;J. Read;A. Appling;S. Oliver;X. Jia;Vipin Kumar
Invertibility aware Integration of Static and Time-series data: An application to Lake Temperature Modeling. (2022 SDM Best Paper Award)
静态和时间序列数据的可逆性感知集成:湖温建模的应用。
Estimating Lake Water Volume With Regression and Machine Learning Methods
用回归和机器学习方法估算湖泊水量
  • DOI:
    10.3389/frwa.2022.886964
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Delaney, Chelsea;Li, Xiang;Holmberg, Kerry;Wilson, Bruce;Heathcote, Adam;Nieber, John
  • 通讯作者:
    Nieber, John
Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics for Temporal Modeling (Selected as one of the best-ranked papers for possible publication in the journal Knowledge and Information Systems.)
Koopman Invertible Autoencoder:Leveraging Forward and Backward Dynamics for Temporal Modeling(被选为可能在《知识与信息系统》杂志上发表的排名最高的论文之一。)
Predicting lake surface water phosphorus dynamics using process-guided machine learning
  • DOI:
    10.1016/j.ecolmodel.2020.109136
  • 发表时间:
    2020-08-15
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hanson, Paul C.;Stillman, Aviah B.;Kumar, Vipin
  • 通讯作者:
    Kumar, Vipin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vipin Kumar其他文献

Gastric antisecretory and cytoprotective effects of hydroalcoholic extracts of Plumeria alba Linn. leaves in rats.
白鸡蛋花水醇提取物的胃抗分泌和细胞保护作用。
  • DOI:
    10.1016/s2095-4964(14)60002-9
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Choudhary;Vipin Kumar;Surender Singh
  • 通讯作者:
    Surender Singh
Biochar amendment alleviates cadmium in contaminated soil and improves nutrient uptake in Rice (Oryza sativa L.)
生物炭改良剂可减轻污染土壤中的镉含量并提高水稻 (Oryza sativa L.) 的养分吸收
  • DOI:
    10.5958/0974-4517.2020.00037.3
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Devanand;P. Sharma;Vipin Kumar;and Sarvajeet
  • 通讯作者:
    and Sarvajeet
Regulation of autoimmunity.
自身免疫的调节。
284 Colorectal Cancer Despite Colonoscopy: Critical Is the Endoscopist, Not the Withdrawal Time
284 尽管进行结肠镜检查仍患结直肠癌:关键是内窥镜医生,而不是停药时间
  • DOI:
    10.1016/s0016-5085(09)60249-3
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Rohit Gupta;M. Steinbach;K. Ballman;Vipin Kumar;P. C. Groen
  • 通讯作者:
    P. C. Groen
Mechanical and electrical properties of PANI-based conductive thermosetting composites
PANI基导电热固性复合材料的机械和电性能
  • DOI:
    10.1177/0731684415588551
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Vipin Kumar;Tomohiro Yokozeki;Teruya Goto;Tatsuhiro Takahashi
  • 通讯作者:
    Tatsuhiro Takahashi

Vipin Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vipin Kumar', 18)}}的其他基金

III: Medium: Advancing Deep Learning for Inverse Modeling
III:媒介:推进逆向建模的深度学习
  • 批准号:
    2313174
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Conference: NSF Workshop on AI-Enabled Scientific Revolution
会议:美国国家科学基金会人工智能支持的科学革命研讨会
  • 批准号:
    2309660
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
BIGDATA: F: Advancing Deep Learning to Monitor Global Change
BIGDATA:F:推进深度学习以监测全球变化
  • 批准号:
    1838159
  • 财政年份:
    2018
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
I-Corps: Geospatial Analytics
I-Corps:地理空间分析
  • 批准号:
    1842974
  • 财政年份:
    2018
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
EAGER: Building and analyzing dynamic brain functional networks
EAGER:构建和分析动态大脑功能网络
  • 批准号:
    1355072
  • 财政年份:
    2013
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
EAGER: Do Nanofoams Have a Natural Vacuum Inside the Cells?
EAGER:纳米泡沫的细胞内有自然真空吗?
  • 批准号:
    1253072
  • 财政年份:
    2012
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Climate Change: A Data Driven Approach
合作研究:了解气候变化:数据驱动的方法
  • 批准号:
    1029711
  • 财政年份:
    2010
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Continuing Grant
III: Small: Generalization of the Association Analysis Framework
三:小:关联分析框架的泛化
  • 批准号:
    0916439
  • 财政年份:
    2009
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
III-CTX: Collaborative Research: Spatio-Temporal Data Mining For Global Scale Eco-Climatic Data
III-CTX:协作研究:全球规模生态气候数据的时空数据挖掘
  • 批准号:
    0713227
  • 财政年份:
    2007
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Continuing Grant
Subcritical CO2-Based Microcellular Extrusion of Environmentally Benign Plastics
环保塑料的亚临界 CO2 微孔挤出
  • 批准号:
    0620835
  • 财政年份:
    2006
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Strategically Engaging Private Institutions at Building Research Infrastructure, Networks and Knowledge (BRINK) in the Emergence of Research
合作研究:会议:在研究的兴起中战略性地让私营机构参与建设研究基础设施、网络和知识(BRINK)
  • 批准号:
    2324590
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
NNA Research: Collaborative Research: Towards resilient water infrastructure in Alaska Native communities through knowledge co-production
NNA 研究:合作研究:通过知识共同生产为阿拉斯加原住民社区打造具有复原力的水基础设施
  • 批准号:
    2220518
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
NNA Research: Collaborative Research: Towards resilient water infrastructure in Alaska Native communities through knowledge co-production
NNA 研究:合作研究:通过知识共同生产为阿拉斯加原住民社区打造具有复原力的水基础设施
  • 批准号:
    2220516
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
NNA Research: Collaborative Research: Towards resilient water infrastructure in Alaska Native communities through knowledge co-production
NNA 研究:合作研究:通过知识共同生产为阿拉斯加原住民社区打造具有复原力的水基础设施
  • 批准号:
    2220517
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Bridging Research and Visualization Design Practice via a Sustainable Knowledge Platform
合作研究:HCC:小型:通过可持续知识平台桥接研究和可视化设计实践
  • 批准号:
    2147044
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Addressing knowledge and capacity shortfalls to advance conservation science and action for native Hawaiian land flora and fauna
合作研究:解决知识和能力不足的问题,以推进夏威夷本土动植物群的保护科学和行动
  • 批准号:
    2301564
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Research Community Development Grant: Collaborative Research: Knowledge of HIV/AIDS: Expertise, Participation, and the Archive in the Long Pandemic
研究社区发展补助金:合作研究:艾滋病毒/艾滋病知识:长期大流行中的专业知识、参与和档案
  • 批准号:
    2240637
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Addressing knowledge and capacity shortfalls to advance conservation science and action for endangered native Hawaiian land flora and fauna.
合作研究:解决知识和能力不足的问题,以推进濒临灭绝的夏威夷本土动植物群的保护科学和行动。
  • 批准号:
    2301565
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Indigenous Northern Landscapes, Visual Repatriation, and Collaborative Knowledge Exchange
合作研究:北方本土景观、视觉归还和合作知识交流
  • 批准号:
    2330924
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 66.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了