Visibility Representations with Crossings
具有交叉口的可见性表示
基本信息
- 批准号:239775286
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphs are an important tool for modelling discrete structures. They are also known as networks, plans, diagrams or schemas. The wide use of graphs is based on the fact that there is a drawing.The planar graphs are the best known and mostly investigated class of graphs. However, most graphs are non-planar, particularly in applications. This has recently lead to the introduction of beyond-planar graphs. Such graphs have crossings in some regulated way, and they adopt important properties from planar graphs, such as as a linear number of edges and drawing algorithms. Planar graphs are commonly drawn straight line. There are orthogonal drawings with horizontal and vertical line segments and visibility representations, where vertices are represented by horizontal lines and edges by a vertical visibility between the respective vertices. Visibility representations are less common than straight-line drawings, but they are algorithmically easier and conceptually more flexible. There is an unexplored potentential behind visibility representations if crossings are allowed in some controlled way. Then visibility representations dominate convential drawing styles. They provide many options to define beyond-planar graphs. In this project we wish to explore this potential of visibility representations. In particular, we define new classes of beyond-planar graphs and shall investigate typical graph theoretic properties and the complexity of recognition problems. Moreover, we shall develop optimized graph drawing algorithms. Our studies shall help to develop beyond-planarity.
图是离散结构建模的重要工具。它们也被称为网络,计划,图表或模式。图的广泛应用是基于有图这一事实,平面图是最著名和研究最多的一类图。然而,大多数图是非平面的,特别是在应用中。最近,这导致了超平面图的引入。这类图以某种规则的方式有交叉,并且它们采用了平面图的重要性质,例如线性边数和绘制算法。平面图通常是画直线的。存在具有水平和垂直线段以及可见性表示的正交绘图,其中顶点由水平线表示,边缘由相应顶点之间的垂直可见性表示。可见性表示不如直线图形常见,但它们在算法上更简单,在概念上更灵活。如果以某种受控的方式允许交叉,那么可见性表示背后还有未开发的潜力。可见性表示在传统的绘图风格中占主导地位。它们提供了许多定义超平面图的选项。在这个项目中,我们希望探索这种潜在的可见性表示。特别是,我们定义了新的类超越平面图,并将调查典型的图论性质和识别问题的复杂性。此外,我们将开发优化的图形绘制算法。我们的研究将有助于超平面性的发展。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recognizing Optimal 1-Planar Graphs in Linear Time
识别线性时间内的最优一平面图
- DOI:10.1007/s00453-016-0226-8
- 发表时间:
- 期刊:
- 影响因子:1.1
- 作者:F. J. Brandenburg
- 通讯作者:F. J. Brandenburg
Recognizing and drawing IC-planar graphs
- DOI:10.1016/j.tcs.2016.04.026
- 发表时间:2015-09
- 期刊:
- 影响因子:3
- 作者:F. Brandenburg;W. Didimo;W. Evans;Philipp Kindermann;G. Liotta;Fabrizio Montecchiani
- 通讯作者:F. Brandenburg;W. Didimo;W. Evans;Philipp Kindermann;G. Liotta;Fabrizio Montecchiani
Outer 1-Planar Graphs
- DOI:10.1007/s00453-015-0002-1
- 发表时间:2016-04
- 期刊:
- 影响因子:1.1
- 作者:Christopher Auer;C. Bachmaier;F. Brandenburg;Andreas Gleißner;Kathrin Hanauer;Daniel Neuwirth;Josef Reislhuber
- 通讯作者:Christopher Auer;C. Bachmaier;F. Brandenburg;Andreas Gleißner;Kathrin Hanauer;Daniel Neuwirth;Josef Reislhuber
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Franz Josef Brandenburg其他文献
Professor Dr. Franz Josef Brandenburg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Franz Josef Brandenburg', 18)}}的其他基金
Ranking Probleme bei unvollständiger Information
信息不完整的排名问题
- 批准号:
210423731 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Radiales und zyklisches Zeichnen von Graphen: Layouts auf dem Zylinder
径向和循环图绘制:圆柱体上的布局
- 批准号:
148338284 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Strukturiertes Clustern von Graphen und deren Visualisierung
图的结构化聚类及其可视化
- 批准号:
5279548 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
Design, Analyse, Implementierung und experimentelle Anwendungen von Algorithmen zum Zeichnen von Graphen
图绘制算法的设计、分析、实现及实验应用
- 批准号:
5215512 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
- 批准号:
24K00093 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Australian Laureate Fellowships
Understanding mental health in the UK welfare system: representations of distress among benefit claimants and implications for assessment and support
了解英国福利体系中的心理健康:福利申请人的痛苦表现以及对评估和支持的影响
- 批准号:
ES/X002101/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
- 批准号:
2339071 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant