Continuous Search and Patrolling on Networks
网络上的持续搜索和巡逻
基本信息
- 批准号:1935826
- 负责人:
- 金额:$ 27.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will contribute to securing the national defense by modeling and solving search and patrolling problems on networks. The project will address how to optimally patrol an airport or shopping mall to minimize the risk of a terrorist attack, how to patrol a border to guard against infiltration, or how to optimally search for an improvised explosive device or lost hiker. A major challenge of modeling such problems is that intelligent adversaries may have the capability to view current search or patrolling policies and exploit their weaknesses. This award supports an improved understanding of the strategic nature of search and patrolling problems, so that better policies can be employed to improve public safety and security. It will also address the need to understand how search and patrolling policies may be constrained by the topology of the environment. This award will support the participation of a talented graduate student in this research, and the PI will integrate the results of the research into a graduate level course in game theory.This research models search and patrolling problems on a network in continuous time and space, rather than the approach taken by most previous work of applying finite methods to a discretized search space. The project will consider the problems of finding (i) a patrol of a network that minimizes the probability of a successful attack or infiltration by an intelligent adversary and (ii) a time-minimal search for a target hidden on a network according to either a known or unknown probability distribution. A game theoretic framework will be used to deal with adversaries and unknown probability distributions, whilst a "one-sided" approach will be used in the case of known probability distributions. The research will exploit graph theoretical properties of networks to produce optimal or near-optimal policies based on an understanding of the structure of the networks, rather than using black box algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将通过建模和解决网络搜索和巡逻问题来为确保国防做出贡献。该项目将解决如何以最佳方式巡逻机场或购物中心,以最大限度地降低恐怖袭击的风险,如何在边境巡逻以防止渗透,或者如何以最佳方式搜寻简易爆炸装置或失踪的徒步旅行者。对此类问题进行建模的一个主要挑战是,聪明的对手可能有能力查看当前的搜索或巡逻策略并利用其弱点。该奖项支持加深对搜索和巡逻问题的战略性质的理解,以便采取更好的政策来改善公共安全。它还将解决了解搜索和巡逻策略如何受到环境拓扑限制的需要。该奖项将支持一名才华横溢的研究生参与这项研究,PI将把研究成果整合到博弈论研究生水平课程中。这项研究对连续时间和空间的网络上的搜索和巡逻问题进行建模,而不是像以前大多数工作那样将有限方法应用于离散搜索空间。该项目将考虑以下问题:(i) 网络巡逻,最大限度地减少智能对手成功攻击或渗透的概率;(ii) 根据已知或未知的概率分布,以最短时间搜索隐藏在网络上的目标。博弈论框架将用于处理对手和未知的概率分布,而“单方面”方法将用于已知概率分布的情况。该研究将利用网络的图论特性,根据对网络结构的理解,而不是使用黑盒算法来制定最佳或接近最佳的政策。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Search and Delivery Man Problems: When are depth-first paths optimal?
搜索和送货员问题:深度优先路径何时是最佳的?
- DOI:10.1016/j.ejor.2020.02.026
- 发表时间:2020
- 期刊:
- 影响因子:6.4
- 作者:Alpern, Steve;Lidbetter, Thomas
- 通讯作者:Lidbetter, Thomas
Optimal pure strategies for a discrete search game
离散搜索博弈的最优纯策略
- DOI:10.1016/j.ejor.2023.08.041
- 发表时间:2024
- 期刊:
- 影响因子:6.4
- 作者:Bui, Thuy;Lidbetter, Thomas;Lin, Kyle Y.
- 通讯作者:Lin, Kyle Y.
Competitive search in a network
网络中的竞争性搜索
- DOI:10.1016/j.ejor.2020.04.003
- 发表时间:2020
- 期刊:
- 影响因子:6.4
- 作者:Angelopoulos, Spyros;Lidbetter, Thomas
- 通讯作者:Lidbetter, Thomas
Optimal patrolling strategies for trees and complete networks
树木和完整网络的最佳巡逻策略
- DOI:10.1016/j.ejor.2023.05.033
- 发表时间:2023
- 期刊:
- 影响因子:6.4
- 作者:Bui, Thuy;Lidbetter, Thomas
- 通讯作者:Lidbetter, Thomas
Continuous Patrolling Games
连续巡逻游戏
- DOI:10.1287/opre.2022.2346
- 发表时间:2022
- 期刊:
- 影响因子:2.7
- 作者:Alpern, Steve;Bui, Thuy;Lidbetter, Thomas;Papadaki, Katerina
- 通讯作者:Papadaki, Katerina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Lidbetter其他文献
Approximate solutions for expanding search games on general networks
- DOI:
10.1007/s10479-018-2966-0 - 发表时间:
2018-07-20 - 期刊:
- 影响因子:4.500
- 作者:
Steve Alpern;Thomas Lidbetter - 通讯作者:
Thomas Lidbetter
Search Games with Predictions
搜索带有预测的游戏
- DOI:
10.48550/arxiv.2401.01149 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Spyros Angelopoulos;Thomas Lidbetter;Konstantinos Panagiotou - 通讯作者:
Konstantinos Panagiotou
On the approximation ratio of the Random Chinese Postman Tour for network search
- DOI:
10.1016/j.ejor.2017.06.004 - 发表时间:
2017-12-16 - 期刊:
- 影响因子:
- 作者:
Thomas Lidbetter - 通讯作者:
Thomas Lidbetter
Thomas Lidbetter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Lidbetter', 18)}}的其他基金
RI: Small: Collaborative Research: Minimum-Cost Strategies for Sequential Search and Evaluation
RI:小型:协作研究:顺序搜索和评估的最低成本策略
- 批准号:
1909446 - 财政年份:2019
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Beyond Query: Exploratory Subgraph Discovery and Search System
超越查询:探索性子图发现和搜索系统
- 批准号:
DP240101591 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Discovery Projects
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Studentship
Search for the Dimuon decay of the Standard Model Higgs Boson using ATLAS
使用 ATLAS 搜索标准模型希格斯玻色子的 Dimuon 衰变
- 批准号:
2907975 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Studentship
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/2 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Fellowship
Electron electric dipole moment search by using polarized ultracold molecule s
利用极化超冷分子进行电子电偶极矩搜索
- 批准号:
23K20858 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Preference-discovery and Repeated Consumer Search
偏好发现和重复消费者搜索
- 批准号:
24K04899 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: SPRF: A Comprehensive Modeling Framework for Semantic Memory Search
博士后奖学金:SPRF:语义记忆搜索综合建模框架
- 批准号:
2313985 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Fellowship Award
Can the Relational Account predict search in multiple-element displays?
关系帐户可以预测多元素显示中的搜索吗?
- 批准号:
DP240102774 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Discovery Projects