Spatially and Spectrally Resolved Semiconductor Single Crystal Arrays for Wafer-Scale Integrated Optoelectronics

用于晶圆级集成光电子学的空间和光谱分辨半导体单晶阵列

基本信息

  • 批准号:
    1936527
  • 负责人:
  • 金额:
    $ 49.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Nontechnical:Hybrid metal halides are a remarkable class of ionic semiconductors with great promise for device applications. Their optical properties can be chemically controlled and they can form single crystals at low temperatures. Single crystals are a highly ordered form of condensed matter and enable high performance electronics and photonics. The aim of this project is to fabricate low-cost, high performance printed devices based on high-quality single crystals and single crystal microarrays of perovskites. The project will focus on direct printing of semiconductor single crystal pixels with chemically-tuned spectral properties on device-ready wafers. The PI will use a co-design strategy to simultaneously tackle single crystal growth and device integration. Direct writing of single crystal transistor and photodetector arrays on wafers will be a crucial step toward next-generation optoelectronic devices and circuits.Technical:This multidisciplinary project seeks to advance the synthesis, processing, and device integration of hybrid metal halide (HMH) semiconductor materials by enabling the direct ink-based growth of single crystal-based optoelectronic devices and arrays thereof. The salt-like nature of HMH materials makes them a unique class of semiconductors with chemical diversity on par with organic semiconductors, crystalline order on par with conventional inorganic semiconductors, and superior transport and optoelectronic properties thanks in part to large spin-orbit coupling. This project will focus on developing synthetic and processing approaches which enable the formation of microscopic single crystals and arrays thereof at pre-determined locations on device-ready substrates using readily available printing and coating technologies. A co-design strategy will simultaneously tackle material formulation, surface chemistry, spectral properties and device performance to successfully and rapidly integrate semiconductor single crystals into (opto)electronic device components and arrays. A direct writing approaches will be developed to produce spectrally-tunable single crystal devices, including field-effect transistors and phototransistors, as well as conventional and polarization-sensitive photodetectors. This will be expanded to demonstrate wafer-scale integration of single crystal device microarrays. The scientific and engineering knowledge developed in this proposal will enable solution-processing to ultimately deliver materials of single crystal caliber without resorting to conventional ultrahigh vacuum techniques or epitaxial growth. The implementation of single crystal microarray fabrication through existing high throughput coating and printing infrastructure designed for traditional thin film coating is pursued for two main reasons: (I) mature platforms which co-integrate materials synthesis and device integration on the same substrate are suitable for co-design, and (II) broad adoption of manufacturing approaches is more likely given the available infrastructure across the nation. The proposed co-design strategy will provide intensification of experiments and assist in verifying scientific and engineering hypotheses crucial to the intended outcomes of this project. The research will raise a new generation of leaders in electronic materials processing and optoelectronic devices. Future career opportunities in these areas will be given to graduate and undergraduate students including women and underrepresented minorities. Dissemination of the research will take place through high impact publications, published datasets, and presentations for the scientific community, as well as through social media and hands-on activities in local K-12 schools, Citizen Science program at the North Carolina Museum of Natural Science, and established outreach programs at North Carolina State University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:混合金属卤化物是一类出色的离子半导体,在器件应用方面前景广阔。它们的光学性质可以通过化学方法控制,并且可以在低温下形成单晶。单晶是一种高度有序的凝聚态物质,能够实现高性能的电子和光子学。该项目的目的是制造基于高质量钙钛矿单晶和单晶微阵列的低成本,高性能印刷器件。该项目将专注于直接印刷半导体单晶像素与化学调谐光谱特性的设备准备晶圆。PI将采用协同设计策略,同时解决单晶生长和器件集成问题。在晶圆上直接写入单晶晶体管和光电探测器阵列将是迈向下一代光电子器件和电路的关键一步。技术:该多学科项目旨在通过直接基于墨水的单晶光电子器件及其阵列的生长来推进混合金属卤化物(HMH)半导体材料的合成、加工和器件集成。HMH材料的类盐性质使其成为一类独特的半导体,其化学多样性与有机半导体相当,晶体有序性与常规无机半导体相当,并且部分由于大的自旋轨道耦合而具有优异的上级传输和光电性能。该项目将侧重于开发合成和加工方法,这些方法能够使用现成的印刷和涂层技术在设备就绪基板上的预定位置形成微观单晶及其阵列。协同设计策略将同时解决材料配方,表面化学,光谱特性和器件性能,以成功快速地将半导体单晶集成到(光)电子器件组件和阵列中。一种直接写入的方法将被开发,以产生光谱可调的单晶器件,包括场效应晶体管和光电晶体管,以及传统的和偏振敏感的光电探测器。这将扩大到演示单晶器件微阵列的晶圆级集成。本提案中开发的科学和工程知识将使溶液处理最终能够提供单晶口径的材料,而无需采用传统的真空技术或外延生长。通过现有的高通量涂布和印刷基础设施设计用于传统的薄膜涂布的单晶微阵列制造的实现是追求两个主要原因:(I)成熟的平台,共同集成材料合成和设备集成在同一基板上是适合于共同设计,和(II)广泛采用的制造方法更有可能在全国范围内提供的基础设施。拟议的共同设计战略将加强实验,并协助验证对该项目预期成果至关重要的科学和工程假设。这项研究将培养出电子材料加工和光电器件领域的新一代领导者。未来在这些领域的就业机会将给予研究生和本科生,包括妇女和代表性不足的少数民族。该研究的传播将通过高影响力的出版物,出版的数据集和科学界的演讲,以及通过社交媒体和当地K-12学校的实践活动,北卡罗来纳州自然科学博物馆的公民科学计划,并在北卡罗来纳州州立大学建立了推广项目。该奖项反映了NSF的法定使命,并被认为值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells
  • DOI:
    10.1126/science.adi4107
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    So Min Park;Mingyang Wei;Jian Xu;H. Atapattu;F. Eickemeyer;Kasra Darabi;Luke Grater;Yi Yang;Cheng Liu;S. Teale;Bin Chen;Hao Chen;Tonghui Wang;Lewei Zeng;Aidan Maxwell;Zaiwei Wang;K. R. Rao;Zhuoyun Cai;S. Zakeeruddin;Jonathan T. Pham;C. Risko;A. Amassian;M. Kanatzidis;K. Graham;M. Grätzel;E. Sargent
  • 通讯作者:
    So Min Park;Mingyang Wei;Jian Xu;H. Atapattu;F. Eickemeyer;Kasra Darabi;Luke Grater;Yi Yang;Cheng Liu;S. Teale;Bin Chen;Hao Chen;Tonghui Wang;Lewei Zeng;Aidan Maxwell;Zaiwei Wang;K. R. Rao;Zhuoyun Cai;S. Zakeeruddin;Jonathan T. Pham;C. Risko;A. Amassian;M. Kanatzidis;K. Graham;M. Grätzel;E. Sargent
A Universal Cosolvent Evaporation Strategy Enables Direct Printing of Perovskite Single Crystals for Optoelectronic Device Applications
通用共溶剂蒸发策略可直接打印用于光电器件应用的钙钛矿单晶
  • DOI:
    10.1002/adma.202109862
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Corzo, Daniel;Wang, Tonghui;Gedda, Murali;Yengel, Emre;Khan, Jafar I.;Li, Ruipeng;Niazi, Muhammad Rizwan;Huang, Zhengjie;Kim, Taesoo;Baran, Derya
  • 通讯作者:
    Baran, Derya
Sustainable materials acceleration platform reveals stable and efficient wide-bandgap metal halide perovskite alloys
  • DOI:
    10.1016/j.matt.2023.06.040
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Tonghui Wang;Ruipeng Li;H. Ardekani;L. Serrano-Luján;Jiantao Wang;Mahdi Ramezani;R. Wilmington;Mihirsinh Chauhan;Robert W. Epps;Kasra Darabi;Boyu Guo;Dali Sun;M. Abolhasani;K. Gundogdu;A. Amassian
  • 通讯作者:
    Tonghui Wang;Ruipeng Li;H. Ardekani;L. Serrano-Luján;Jiantao Wang;Mahdi Ramezani;R. Wilmington;Mihirsinh Chauhan;Robert W. Epps;Kasra Darabi;Boyu Guo;Dali Sun;M. Abolhasani;K. Gundogdu;A. Amassian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aram Amassian其他文献

Strain regulation retards natural operation decay of perovskite solar cells
应变调节延缓钙钛矿太阳能电池的自然运行衰减
  • DOI:
    10.1038/s41586-024-08161-x
  • 发表时间:
    2024-10-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Yunxiu Shen;Tiankai Zhang;Guiying Xu;Julian A. Steele;Xiankai Chen;Weijie Chen;Guanhaojie Zheng;Jiajia Li;Boyu Guo;Heyi Yang;Yeyong Wu;Xia Lin;Thamraa Alshahrani;Wanjian Yin;Jian Zhu;Feng Wang;Aram Amassian;Xingyu Gao;Xiaohong Zhang;Feng Gao;Yaowen Li;Yongfang Li
  • 通讯作者:
    Yongfang Li
Mapping the interfacial energetic landscape in organic solar cells reveals pathways to reducing non-radiative losses
绘制有机太阳能电池的界面能量景观图揭示了减少非辐射损失的途径
  • DOI:
    10.1016/j.matt.2024.10.007
  • 发表时间:
    2025-01-08
  • 期刊:
  • 影响因子:
    17.500
  • 作者:
    Gaurab J. Thapa;Mihirsinh Chauhan;Jacob P. Mauthe;Daniel B. Dougherty;Aram Amassian
  • 通讯作者:
    Aram Amassian
Cationic ligation guides quantum-well formation in layered hybrid perovskites
  • DOI:
    10.1016/j.matt.2024.09.010
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
  • 作者:
    Kasra Darabi;Mihirsinh Chauhan;Boyu Guo;Jiantao Wang;Dovletgeldi Seyitliyev;Fazel Bateni;Tonghui Wang;Masoud Ghasemi;Laine Taussig;Nathan Woodward;Xiang-Bin Han;Evgeny O. Danilov;Ruipeng Li;Xiaotong Li;Milad Abolhasani;Kenan Gundogdu;Aram Amassian
  • 通讯作者:
    Aram Amassian
Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells
通过高效稳定的小分子受体三元太阳能电池缩小有机光伏的效率-稳定性-成本差距
  • DOI:
    10.1038/nmat4797
  • 发表时间:
    2016-11-21
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Derya Baran;Raja Shahid Ashraf;David A. Hanifi;Maged Abdelsamie;Nicola Gasparini;Jason A. Röhr;Sarah Holliday;Andrew Wadsworth;Sarah Lockett;Marios Neophytou;Christopher J. M. Emmott;Jenny Nelson;Christoph J. Brabec;Aram Amassian;Alberto Salleo;Thomas Kirchartz;James R. Durrant;Iain McCulloch
  • 通讯作者:
    Iain McCulloch

Aram Amassian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aram Amassian', 18)}}的其他基金

Planning Grant: Engineering Research Center for Green and Climate Resilient Built Environments (Green CRiB)
规划资助:绿色和气候适应型建筑环境工程研究中心(Green CRiB)
  • 批准号:
    2124332
  • 财政年份:
    2021
  • 资助金额:
    $ 49.53万
  • 项目类别:
    Standard Grant
REU SITE: Collaborative Research: Nanoscale Detectives -- Elucidating the Structure and Dynamics of Hybrid Perovskite Systems
REU 站点:合作研究:纳米级侦探——阐明混合钙钛矿系统的结构和动力学
  • 批准号:
    2050900
  • 财政年份:
    2021
  • 资助金额:
    $ 49.53万
  • 项目类别:
    Standard Grant

相似海外基金

The prospect of a complete spectrally-resolved Earth Radiation Budget dataset from the inter-operation of new EO missions.
通过新的地球观测任务的互操作获得完整的光谱解析地球辐射预算数据集的前景。
  • 批准号:
    2446759
  • 财政年份:
    2020
  • 资助金额:
    $ 49.53万
  • 项目类别:
    Studentship
TartanSW: a new method for spectrally-resolved standing wave cell microscopy and mesoscopy
TartanSW:光谱分辨驻波细胞显微镜和介观镜检查的新方法
  • 批准号:
    BB/P02565X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 49.53万
  • 项目类别:
    Research Grant
Diffuse, spectrally-resolved optical strategies for detecting activity of individual neurons from in vivo mammalian brain with GEVIs
使用 GEVI 检测体内哺乳动物大脑中单个神经元活动的漫反射光谱分辨光学策略
  • 批准号:
    9395599
  • 财政年份:
    2017
  • 资助金额:
    $ 49.53万
  • 项目类别:
CAREER: Chemical Imaging through Ultrahigh-Throughput Single-Molecule Spectroscopy and Spectrally-Resolved Superresolution Microscopy
职业:通过超高通量单分子光谱和光谱分辨超分辨率显微镜进行化学成像
  • 批准号:
    1554717
  • 财政年份:
    2016
  • 资助金额:
    $ 49.53万
  • 项目类别:
    Continuing Grant
Measurement procedure based on spectrally resolved light and photogrammetric methods for dynamic 6D coordinate measurements in large volumes (Lambda-GPS)
基于光谱分辨光和摄影测量方法的测量程序,用于大体积动态 6D 坐标测量 (Lambda-GPS)
  • 批准号:
    322750896
  • 财政年份:
    2016
  • 资助金额:
    $ 49.53万
  • 项目类别:
    Research Grants
Implementation of Spectrally Resolved Goniometer Measurement System
光谱分辨测角仪测量系统的实现
  • 批准号:
    479650-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 49.53万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Spectrally-Resolved Gonio-Reflectometry of Planetary Surfaces
行星表面的光谱分辨测角反射测量
  • 批准号:
    480968-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 49.53万
  • 项目类别:
    University Undergraduate Student Research Awards
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
  • 批准号:
    8738671
  • 财政年份:
    2013
  • 资助金额:
    $ 49.53万
  • 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
  • 批准号:
    8660174
  • 财政年份:
    2013
  • 资助金额:
    $ 49.53万
  • 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
  • 批准号:
    8913967
  • 财政年份:
    2013
  • 资助金额:
    $ 49.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了