GOALI: Turbine Film Cooling Fundamental Physics and Improved Designs for Transonic Flows
目标:涡轮气膜冷却基础物理和跨音速流的改进设计
基本信息
- 批准号:1936676
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gas turbine (jet) engines are used to power most large commercial aircraft. From basic thermodynamic principles, gas turbine efficiency increases with increases in the maximum temperature of the gas flowing through the core of the engine. To enable engines to operate at higher gas temperatures, active cooling can be used to protect the metal components within the engine. This cooling is accomplished using internal coolant channels. The air coolant is exhausted through small holes in the surface where the air then forms a thin layer (film) of lower temperature fluid that protects the metal surface from the hot mainstream gases. Recent studies have shown that most all current film cooling designs are inherently flawed. This is because they are based on a presumption that laboratory testing at low speeds will provide performance data that is applicable to the high speeds that occur in actual engine operations. In fact, recent studies have shown that that at the high gas flow speeds that occur in the actual gas turbine engines, the performance is significantly different than found with low speed testing. Consequently, this study will focus on developing fundamental understanding of high speed effects on turbine film cooling performance, and developing new film cooling configurations specifically designed to operate at realistic engine speeds. For this research program, a new high speed test facility will be constructed and used to test turbine cooling configurations at realistic Mach numbers. This test facility will allow direct measurements of fundamental flow and heat transfer mechanisms for film cooling using advanced shaped hole configurations operated at transonic speeds. Computational techniques will be used to determine optimum film cooling configurations that will mitigate the effects of supersonic flows within cooling holes. Furthermore, new turbine cooling configurations will be designed based on the wide range of geometrical configurations that are enabled by new additive manufacturing techniques with metal powder. These new designs are expected to substantially increase turbine cooling performance, allowing for the development of the next generation gas turbine engines operating at much higher core gas temperatures, with resulting higher efficiencies. The educational goals of the program include course development in advanced experimental methods, and fostering close interactions between students and our industrial partner to provide students with insight into real world engineering processes and techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
燃气涡轮(喷气)发动机用于为大多数大型商用飞机提供动力。从基本的热力学原理来看,燃气轮机效率随着流经发动机核心的气体最高温度的增加而增加。为了使发动机能够在更高的气体温度下工作,可以使用主动冷却来保护发动机内的金属部件。这种冷却是通过内部冷却剂通道完成的。空气冷却剂通过表面的小孔排出,在那里空气形成一层薄薄的低温流体(薄膜),保护金属表面免受热主流气体的影响。最近的研究表明,大多数当前的膜冷却设计本身就存在缺陷。这是因为它们基于这样一种假设,即低速下的实验室测试将提供适用于发动机实际高速运行时的性能数据。事实上,最近的研究表明,在实际燃气涡轮发动机中发生的高气流速度下,其性能与低速测试时的性能有显著差异。因此,本研究将侧重于发展高速对涡轮气膜冷却性能影响的基本理解,并开发新的气膜冷却配置,专门设计用于在实际发动机转速下运行。在这个研究项目中,将建造一个新的高速测试设备,用于在实际马赫数下测试涡轮冷却配置。该测试设备将允许使用先进的异形孔配置在跨音速下直接测量膜冷却的基本流动和传热机制。计算技术将用于确定最佳的膜冷却配置,以减轻冷却孔内超音速流动的影响。此外,新的涡轮冷却配置将基于金属粉末新增材制造技术实现的广泛几何配置而设计。这些新设计有望大幅提高涡轮冷却性能,从而开发出在更高核心气体温度下运行的下一代燃气涡轮发动机,从而提高效率。该计划的教育目标包括先进实验方法的课程开发,并促进学生与我们的工业合作伙伴之间的密切互动,为学生提供对现实世界工程过程和技术的洞察。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental Study of Compressible Film Cooling Scaling and Hole Geometry
可压缩气膜冷却结垢和孔几何形状的实验研究
- DOI:10.1115/gt2023-104038
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fox, Dale W.;Furgeson, Michael;Flachs, Elise M.;Bogard, David G.
- 通讯作者:Bogard, David G.
Considerations for Compressible Film Cooling: A Computational Study of the Effects of Transonic Flows and Varying Mainstream Mach Number
可压缩薄膜冷却的考虑因素:跨音速流和变化的主流马赫数影响的计算研究
- DOI:10.1115/gt2023-104049
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fox, Dale W.;Furgeson, Michael;Bogard, David G.
- 通讯作者:Bogard, David G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Bogard其他文献
David Bogard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Bogard', 18)}}的其他基金
Research Initiation: Interdependence of Large and Small Scale Structure in Turbulent Boundary Layers
研究启动:湍流边界层中大小尺度结构的相互依赖
- 批准号:
8404892 - 财政年份:1984
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
An investigation into combined film and internal cooling of turbine blades
涡轮叶片气膜冷却和内冷联合研究
- 批准号:
EP/R021279/1 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Research Grant
An experimental investigation into combined film and internal cooling of turbine blades
涡轮叶片气膜与内冷联合的实验研究
- 批准号:
2103847 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Studentship
Flow and heat transfer in complex film cooling configurations for application in future gas turbine combustors
复杂薄膜冷却配置中的流动和传热,适用于未来燃气轮机燃烧室
- 批准号:
239213895 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Research Grants
Numerical Modeling of Liquid Droplet Impingement Erosion Considering of Condensation/Liquid Film/Splash and Application for Low Pressure Turbine
考虑凝结/液膜/飞溅的液滴冲击侵蚀数值模拟及其在低压汽轮机上的应用
- 批准号:
24760142 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Film cooling of gas turbine baldes using new geometry-holes
使用新几何孔对燃气轮机叶片进行薄膜冷却
- 批准号:
311579-2007 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Film Cooling of Gas Turbine Blades
燃气轮机叶片气膜冷却
- 批准号:
415371-2011 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
University Undergraduate Student Research Awards
Film cooling of gas turbine baldes using new geometry-holes
使用新几何孔对燃气轮机叶片进行薄膜冷却
- 批准号:
311579-2007 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Film cooling over gas turbine blades
燃气轮机叶片薄膜冷却
- 批准号:
398157-2010 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
University Undergraduate Student Research Awards
Film cooling of gas turbine baldes using new geometry-holes
使用新几何孔对燃气轮机叶片进行薄膜冷却
- 批准号:
311579-2007 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Thermal Analysis of Full Coverage Film Cooling (FCFC) for Turbine Vanes and Rotor Blades
涡轮静叶和转子叶片全覆盖气膜冷却 (FCFC) 的热分析
- 批准号:
355786-2007 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Industrial Research Fellowships














{{item.name}}会员




