EAGER: Solar Thermal Soil Improvement over Different Depths
EAGER:不同深度的太阳能热土壤改良
基本信息
- 批准号:1941571
- 负责人:
- 金额:$ 24.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly-concept Grant for Exploratory Research (EAGER) project addresses the geotechnical engineering research needed to assess the feasibility of using solar thermal energy to improve the mechanical properties of soft soil deposits over different depth ranges. Specifically, heated fluid collected from solar thermal panels circulated through closed-loop geothermal heat exchangers in the subsurface is used to induce thermal volumetric contraction and a corresponding increase in shear strength of a targeted zone of soil. Arrays of geothermal heat exchangers in vertical and horizontal configurations will be investigated to improve soil over different depth ranges and areal distributions. Advantages of this approach are that soil improvement can be gained in a targeted manner using renewable energy, after which the geothermal heat exchangers can be used for long-term underground thermal energy storage, yielding cost savings when compared to available soft soil improvement technologies. The research plan seeks to better understand fundamental processes governing the thermal volume change of soft soils over different depth ranges and to improve constitutive models for soft soils needed in advanced computer simulations, addressing the NSF mission "to promote the progress of science." If feasible, solar thermal energy and geothermal heat exchangers will be important tools for the cost-effective improvement of challenging soft soil deposits encountered in civil infrastructure projects, offshore or river sediments, mine tailings dams, and coal ash impoundments. This project will introduce undergraduate students from diverse backgrounds to research through established summer programs at UCSD like STARS and ENLACE. A fundamental issue investigated in this study that will impact the feasibility of solar thermal soil improvement is the possible impact of the initial mean effective stress (or initial void ratio) on the magnitude of drained thermal volume change of normally consolidated soils for a given temperature increment. Although existing thermo-elasto-plastic models indicate that all normally consolidated soils should have the same thermal volume change due to thermal hardening, limited data available for heating of normally consolidated soils indicate that soils lower in initial mean effective stress and higherin initial void ratio may experience greater thermal volume changes and greater increases in undrained shear strength after improvement. If these limited data are valid, this would indicate that shallower soils may experience greater improvement for a given temperature increment. The objective of this project is to better understand the thermal volume change of normally consolidated clay through a comprehensive experimental testing program in a thermal triaxial cell and to use the experimental results to enhance existing drained thermo-elasto-plastic models and undrained thermal pressurization models. Along these lines, this project seeks to investigate potential impacts of temperature and mean effective stress on key material properties including the thermal hardening parameter, the coefficient of thermal expansion of the soil skeleton and the coefficient of compressibility of the soil. Using the knowledge gained from this investigation, this project seeks to unify predictions from the transient coupled heat transfer and water flow process associated with solar thermal soil improvement with the observed trends in drained thermal volume change. The unified model will be used to simulate solar thermal soil improvement process to understand the roles of heat exchanger geometry and solar thermal boundary conditions in reaching different degrees of soil improvement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EARLY概念探索性研究资助(EAGER)项目致力于岩土工程研究,以评估利用太阳热能改善不同深度范围内软土沉积物力学性能的可行性。 具体地,从太阳能热板收集的加热流体通过地下的闭环地热热交换器循环,用于引起热体积收缩和土壤目标区域的剪切强度的相应增加。 将研究垂直和水平配置的地热换热器阵列,以改善不同深度范围和区域分布的土壤。 这种方法的优点是可以使用可再生能源以有针对性的方式进行土壤改良,之后地热换热器可以用于长期的地下热能储存,与现有的软土改良技术相比,可以节省成本。 该研究计划旨在更好地了解不同深度范围内软土热体积变化的基本过程,并改进先进计算机模拟所需的软土本构模型,实现NSF的使命“促进科学进步”。“如果可行,太阳能和地热换热器将成为具有成本效益的重要工具,用于改善民用基础设施项目中遇到的具有挑战性的软土沉积物,海上或河流沉积物,尾矿坝和煤灰蓄水池。 该项目将介绍来自不同背景的本科生,通过在UCSD像明星和ENLACE既定的暑期课程进行研究。 在这项研究中,将影响太阳能热土壤改良的可行性的一个基本问题是初始平均有效应力(或初始孔隙比)的排水正常固结土壤的热体积变化的大小为一个给定的温度增量的可能影响。 虽然现有的热弹塑性模型表明,所有正常固结的土壤应该有相同的热体积变化,由于热硬化,有限的数据可用于正常固结的土壤加热表明,土壤在初始平均有效应力较低和较高的初始孔隙比可能会经历更大的热体积变化和更大的增加后,不排水剪切强度的改进。 如果这些有限的数据是有效的,这将表明,较浅的土壤可能会经历更大的改善,为给定的温度增量。 本项目的目的是更好地了解正常固结粘土的热体积变化,通过一个全面的实验测试程序,在一个热三轴单元,并使用实验结果,以加强现有的排水热弹塑性模型和不排水热压模型。 沿着这些路线,该项目旨在调查温度和平均有效应力对关键材料特性的潜在影响,包括热硬化参数,土壤骨架的热膨胀系数和土壤的压缩系数。 利用从这项调查中获得的知识,该项目旨在统一预测从瞬态耦合传热和水流过程与太阳能热土壤改善与所观察到的趋势,在排水热体积变化。 统一模型将用于模拟太阳能热土壤改良过程,以了解热交换器几何形状和太阳能热边界条件在达到不同程度的土壤改良中的作用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Drained Heating and Cooling on the Preconsolidation Stress of Saturated Normally Consolidated Clays
排水加热和冷却对饱和常固结粘土预固结应力的影响
- DOI:10.1061/9780784482780.061
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Samarakoon, Radhavi A.;McCartney, John S.
- 通讯作者:McCartney, John S.
C7.(2021). Performance of prefabricated thermal drains in soft clay. Geosynthetics 2021. Kansas City. Feb. 21-23. IFAI, Roseville, MI. 1-12.
C7.(2021)。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Samarakoon, R.;McCartney, J.S.
- 通讯作者:McCartney, J.S.
Role of initial effective stress on the thermal volume change of normally consolidated clay
初始有效应力对正常固结粘土热体积变化的影响
- DOI:10.1051/e3sconf/202020509001
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Samarakoon, Radhavi;McCartney, John S.
- 通讯作者:McCartney, John S.
Analysis of thermal drains in soft clays
软粘土热排水分析
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Samarakoon, R.;McCartney, J.S.
- 通讯作者:McCartney, J.S.
Temperature-Dependent Model for Small-Strain Shear Modulus of Unsaturated Soils
非饱和土小应变剪切模量的温度相关模型
- DOI:10.1061/(asce)gt.1943-5606.0002406
- 发表时间:2020
- 期刊:
- 影响因子:3.9
- 作者:Vahedifard, Farshid;Thota, Sannith Kumar;Cao, Toan Duc;Samarakoon, Radhavi Abeysiridara;McCartney, John S.
- 通讯作者:McCartney, John S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John McCartney其他文献
DISSEMINATED BLASTOMYCOSIS IN AN IMMUNOCOMPETENT INDIVIDUAL WITH PERICARDIAL INVOLVEMENT: A CASE OF DELAYED DIAGNOSIS
- DOI:
10.1016/j.chest.2020.08.511 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Timothy Rowe;Corey Sadd;Matthew Lambert;John McCartney;Amy Malik - 通讯作者:
Amy Malik
Choosing a language to suit your operation
- DOI:
10.1016/s0011-684x(82)80302-x - 发表时间:
1982-02-01 - 期刊:
- 影响因子:
- 作者:
John McCartney - 通讯作者:
John McCartney
Who will be in control of future networks?
- DOI:
10.1016/s0011-684x(82)80301-8 - 发表时间:
1982-02-01 - 期刊:
- 影响因子:
- 作者:
John McCartney - 通讯作者:
John McCartney
Heat transfer analysis of thermo-active foundations
- DOI:
10.1016/j.enbuild.2014.09.063 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
Christian Kaltreider;Moncef Krarti;John McCartney - 通讯作者:
John McCartney
John McCartney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John McCartney', 18)}}的其他基金
Shock wave focusing to achieve high energy concentration
冲击波聚焦实现能量高度集中
- 批准号:
1803592 - 财政年份:2018
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
CAREER: Thermo-Active Geotechnical Systems with Reinforced, Unsaturated Soils
职业:加筋非饱和土的热活性岩土系统
- 批准号:
1540262 - 财政年份:2015
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
SEP Collaborative: Pathways to Scalable, Efficient and Sustainable Soil Borehole Thermal Energy Storage Systems
SEP 协作:可扩展、高效和可持续的土壤钻孔热能存储系统之路
- 批准号:
1540479 - 财政年份:2015
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
SEP Collaborative: Pathways to Scalable, Efficient and Sustainable Soil Borehole Thermal Energy Storage Systems
SEP 协作:可扩展、高效和可持续的土壤钻孔热能存储系统之路
- 批准号:
1230237 - 财政年份:2012
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
CAREER: Thermo-Active Geotechnical Systems with Reinforced, Unsaturated Soils
职业:加筋非饱和土的热活性岩土系统
- 批准号:
1054190 - 财政年份:2011
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
Soil Structure Interaction in Geothermal Foundations
地热基础中土壤结构的相互作用
- 批准号:
0928159 - 财政年份:2009
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
相似国自然基金
基于“夸父一号”HXI载荷和Solar Orbiter /STIX的耀斑X射线暴多视角观测及研究
- 批准号:12303063
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Thermal Optimisation of Gigascale Solar Photovoltaics
千兆级太阳能光伏发电的热优化
- 批准号:
LP220100162 - 财政年份:2024
- 资助金额:
$ 24.41万 - 项目类别:
Linkage Projects
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 24.41万 - 项目类别:
Studentship
Energy interface engineering for self-sustaining solar thermal distillation system: Enhancement of atmospheric cooling using microstructured surface layers
自持太阳能热蒸馏系统的能量界面工程:利用微结构表面层增强大气冷却
- 批准号:
23K04652 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing new solutions and building capacity to unlock the potential of solar thermal in East Africa
开发新的解决方案并建设能力以释放东非太阳能热利用的潜力
- 批准号:
10046726 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Collaborative R&D
Topology optimization of solar thermal receiver for converting carbon dioxide into fuel
将二氧化碳转化为燃料的太阳能集热器的拓扑优化
- 批准号:
22KF0117 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hybridization of photovoltaic power generation and solar thermal power generation by combinatorial optimization
通过组合优化实现光伏发电与光热发电的混合
- 批准号:
22K03875 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Condensed Molecular Solar Thermal System Using Multi-azobenzene Derivatives
使用多偶氮苯衍生物开发凝聚式分子太阳能热系统
- 批准号:
22K05299 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coupled solar thermal - air source heat pump (ASHP) system integrating thermal energy storage for electrification of space heating in cold climates
集成热能存储的太阳能热-空气源热泵耦合(ASHP)系统,用于寒冷气候下空间供暖的电气化
- 批准号:
578486-2022 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Alliance Grants
Development and field testing of stand-alone solar thermal energy conversion systems for remote community applications
用于远程社区应用的独立太阳能热能转换系统的开发和现场测试
- 批准号:
RGPIN-2021-03818 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Discovery Grants Program - Individual
Computational methods for analysis and optimization of solar thermal energy collection and storage technologies
太阳能热能收集和存储技术分析和优化的计算方法
- 批准号:
RGPIN-2017-04078 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Discovery Grants Program - Individual