CAREER: Synthesis of Feedback-based Online Algorithms for Power Grids

职业:基于反馈的电网在线算法综合

基本信息

  • 批准号:
    1941896
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This CAREER proposal focuses on power grids, and aims to translate foundational theory and algorithms into breakthrough real-time optimization and control approaches for distributed energy resources (DERs). In this context, the overarching goal is to overcome current technological and operational barriers associated with the large-scale integration of DERs, where: (a) the deployment of DERs with business-as-usual practices has decreased power-quality and reliability, (b) existing network optimization approaches may fail to provide solutions at a time scale that matches the dynamics of power systems with DERs, and (c) synthetic models for users’ preferences and comfort may not capture the users’ goals truthfully. The research plan seeks a shift from a paradigm with a time-scale separation between economic optimization and local control – predominant in today's distribution grids, where corrective and localized rules serve as a basis for real-time voltage regulation and ancillary-service provisioning – to operations where DERs actively partake into grid operations and leverage real-time network-level coordination to seek increased efficiency and reliability. DER coordination is engineered so that DERs can learn to maximize users' preferences, while aiding system-level frequency and voltage control. An integrated education and outreach plan will engage middle- and high-school students through a summer Science, Technology, Engineering and Mathematics (STEM) Research Academy and lectures for the Pre-Collegiate Development Program. To bridge research and education, the PI will develop courses on the themes of online optimization for networks and optimization of power systems, and will promote undergraduate student research. A working group on optimization and learning will be created at the University of Colorado Boulder in synergy with the Autonomous Systems Interdisciplinary Research Theme, to bring together faculty and students across the campus and stimulate multi-disciplinary research and education.The proposed research leverages time-varying optimization models for networks operating in dynamic environments, and seeks to develop real-time optimization architectures with tightly-integrated feedback and learning components. The proposed feedback-based online algorithms have the following key attributes: i) Principled algorithmic steps employ measurements from the network to bypass the need for a network model; ii) Algorithms include humans in the loop by learning the users' utility functions from users' feedback during the execution of the online decision algorithm; iii) Algorithms are implemented in closed loop with the power network to acknowledge dynamics and effectively act as feedback controllers; and, iv) Algorithms promote low-complexity, distributed, and scalable architectures. Fundamental tradeoffs between convergence rate, tracking of time-varying optimal solutions, maximum constraint violation, and computational complexity of the algorithms will be offered.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该CAREER提案专注于电网,旨在将基础理论和算法转化为分布式能源(DER)的突破性实时优化和控制方法。在这方面,总体目标是克服与大规模整合减少灾害风险机制相关的现有技术和业务障碍,其中:(a)以通常的商业实践部署DER已经降低了电力质量和可靠性,(B)现有的网络优化方法可能无法在与具有DER的电力系统的动态相匹配的时间尺度上提供解决方案,以及(c)用户偏好和舒适度的综合模型可能无法真实地捕捉用户的目标。该研究计划寻求从经济优化和本地控制之间的时间尺度分离的范式转变-在当今的配电网中占主导地位,其中校正和本地化规则作为实时电压调节和辅助服务提供的基础-到DER积极参与电网运营并利用实时网络级协调来寻求提高效率和可靠性的操作。DER协调是经过设计的,以便DER可以学习最大限度地提高用户的偏好,同时帮助系统级频率和电压控制。一项综合教育和推广计划将通过夏季科学、技术、工程和数学(STEM)研究学院和大学预科发展方案讲座吸引初中和高中学生。为了连接研究和教育,PI将开发以网络在线优化和电力系统优化为主题的课程,并将促进本科生的研究。科罗拉多大学博尔德分校将成立一个优化和学习工作组,与自治系统跨学科研究主题协同,将校园内的教师和学生聚集在一起,促进多学科研究和教育。拟议的研究利用动态环境中运行的网络的时变优化模型,并寻求开发具有紧密集成的反馈和学习组件的实时优化架构。所提出的基于反馈的在线算法具有以下关键属性:i)原则性的算法步骤采用来自网络的测量以绕过对网络模型的需要; ii)算法通过在在线决策算法的执行期间从用户的反馈学习用户的效用函数而将人包括在循环中; iii)算法在电力网络的闭环中实现,以确认动态并有效地充当反馈控制器;以及iv)算法促进低复杂性、分布式和可扩展的架构。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online Optimization of Switched LTI Systems Using Continuous-Time and Hybrid Accelerated Gradient Flows
  • DOI:
    10.1016/j.automatica.2022.110579
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Bianchin;J. Poveda;E. Dall’Anese
  • 通讯作者:
    G. Bianchin;J. Poveda;E. Dall’Anese
Time-Varying Optimization of Networked Systems With Human Preferences
  • DOI:
    10.1109/tcns.2022.3203467
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ana M. Ospina;Andrea Simonetto;E. Dall’Anese
  • 通讯作者:
    Ana M. Ospina;Andrea Simonetto;E. Dall’Anese
Time-Varying Convex Optimization: Time-Structured Algorithms and Applications
  • DOI:
    10.1109/jproc.2020.3003156
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Andrea Simonetto;E. Dall’Anese;Santiago Paternain;G. Leus;G. Giannakis
  • 通讯作者:
    Andrea Simonetto;E. Dall’Anese;Santiago Paternain;G. Leus;G. Giannakis
Online Saddle Point Tracking with Decision-Dependent Data
  • DOI:
    10.48550/arxiv.2212.02693
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Killian Wood;E. Dall’Anese
  • 通讯作者:
    Killian Wood;E. Dall’Anese
Data-Enabled Gradient Flow as Feedback Controller: Regulation of Linear Dynamical Systems to Minimizers of Unknown Functions
作为反馈控制器的数据支持梯度流:调节线性动力系统以最小化未知函数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emiliano Dall'Anese其他文献

Emiliano Dall'Anese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emiliano Dall'Anese', 18)}}的其他基金

Collaborative Research: Closed-loop Optimization and Control of Physical Networks Subject to Dynamic Costs, Constraints, and Disturbances
协作研究:受动态成本、约束和干扰影响的物理网络的闭环优化和控制
  • 批准号:
    2044946
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

新型滤波器综合技术-直接综合技术(Direct synthesis Technique)的研究及应用
  • 批准号:
    61671111
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Examining thyroid hormone synthesis feedback loops as xenobiotic target for brominated flame retardant metabolites
检查甲状腺激素合成反馈回路作为溴化阻燃剂代谢物的异生素靶标
  • 批准号:
    10373054
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Examining thyroid hormone synthesis feedback loops as xenobiotic target for brominated flame retardant metabolites
检查甲状腺激素合成反馈回路作为溴化阻燃剂代谢物的异生素靶标
  • 批准号:
    10193280
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Collaborative Research: Spectral Synthesis for Broad Absorption Line Quasars - Feedback and Physics for Everyone
合作研究:宽吸收线类星体的光谱合成 - 每个人的反馈和物理
  • 批准号:
    2007023
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Spectral Synthesis for Broad Absorption Line Quasars - Feedback and Physics for Everyone
合作研究:宽吸收线类星体的光谱合成 - 每个人的反馈和物理
  • 批准号:
    2006771
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Prostaglandin EP4 receptor activation and effects on PGE2 synthesis and feedback
前列腺素 EP4 受体激活及其对 PGE2 合成和反馈的影响
  • 批准号:
    525379-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
CRII: CHS: Constraint Consistent, Task-Based Musculoskeletal Control Framework for Human Motion Synthesis and Immediate Feedback
CRII:CHS:用于人体运动合成和即时反馈的约束一致、基于任务的肌肉骨骼控制框架
  • 批准号:
    1657595
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Biological synthesis of phosphate ions and its feedback mechanism of osteocyte
磷酸根离子的生物合成及其骨细胞的反馈机制
  • 批准号:
    15H05010
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthesis of liner feedback shift register allowing give pairs of input and output arrays
线性反馈移位寄存器的综合允许给出输入和输出阵列对
  • 批准号:
    14550350
  • 财政年份:
    2002
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Optimal Synthesis of State-Estimate Feedback Digital Controllers
状态估计反馈数字控制器的优化综合研究
  • 批准号:
    13650489
  • 财政年份:
    2001
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Further development of complete modal synthesis for the frequency domain design of state feedback control
状态反馈控制频域设计的完整模态综合的进一步发展
  • 批准号:
    5223898
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了