FET: CAREER: Algorithms, cryptography and complexity meet quantum reductions
FET:职业:算法、密码学和复杂性满足量子缩减
基本信息
- 批准号:1942706
- 负责人:
- 金额:$ 53.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New problems are often solved by (implicitly) converting them into familiar problems that people already know how to solve. Mathematicians and computer scientists formalize this methodology as reductions. This project will revisit reductions, i.e., the converting procedures, by equipping them with the emerging technology of quantum computing. After developing the basic toolkit, quantum reductions will be employed in two major directions: basing cryptography on the better-understood NP-hard problems and the like, and designing new algorithms. The impacts include strengthening the foundation for secure communication and computation, boosting the power of successful quantum algorithmic framework to produce new algorithmic techniques, as well as developing insights and finer picture into the fundamental capabilities of quantum and classical computation. The research will be intertwined with a concerted effort in education and outreach. New courses and strategies will be exercised, and activities such as quantum workshops and programming contests will be organized. All will serve the goal of inviting more students in quantum information science and training a diverse workforce in quantum and STEM. Advising will be conducted towards a broad group of students at various levels, which will be combined with building connections with industry and research labs to enhance research dissemination and the career success of students.This project approaches the fundamental pursuit of understanding the strengths and limits of quantum computing and making it accessible via a novel route, reductions, which are procedures that effectively relate one problem to another. A systematic investigation will be conducted on algorithm design, cryptography and complexity theory under quantum reductions. The major objectives are: 1) pinning down formal definitions of quantum reductions based on the classical counterparts (e.g., Karp and Turing reductions), and finding their general properties; 2) revisiting average-case hardness under quantum reductions, focusing on the inquiry of basing cryptography on worst-case hardness, and the reducibility between cryptographic primitives; and 3) using quantum reductions to design new algorithms and establish (worst-case) hardness results, and depicting a finer picture of the capabilities of quantum and classical computation. A concerted effort in education, mentoring and outreach will be integrated into the research plan, which can train a new generation of workforce in quantum computation and further broaden the participation in computing, STEM more generally, from a diverse group of students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新的问题通常通过(隐含地)将它们转化为人们已经知道如何解决的熟悉问题来解决。数学家和计算机科学家将这种方法形式化为约简。该项目将重新审查削减问题,即,转换程序,通过为它们配备新兴的量子计算技术。在开发了基本工具包之后,量子约简将在两个主要方向上使用:将密码学建立在更好理解的NP难问题等基础上,并设计新的算法。这些影响包括加强安全通信和计算的基础,提高成功的量子算法框架的能力,以产生新的算法技术,以及对量子和经典计算的基本能力的深入了解和更好的了解。这项研究将与教育和外联方面的协调努力交织在一起。新的课程和战略将被运用,量子研讨会和编程竞赛等活动将被组织。所有这些都将有助于吸引更多的学生参与量子信息科学,并培养量子和STEM领域的多元化劳动力。该项目将为不同层次的学生提供咨询,并与工业和研究实验室建立联系,以促进研究传播和学生的职业成功。该项目的基本目标是了解量子计算的优势和局限性,并通过一种新的途径,即简化,将一个问题有效地与另一个问题联系起来。系统地研究量子约化下的算法设计、密码学和复杂性理论。主要目标是:1)基于经典对应物(例如,Karp和Turing约简),并找到它们的一般性质; 2)重新审视量子约简下的平均情况硬度,专注于最坏情况硬度的密码学基础的调查,以及密码原语之间的约简; 3)使用量子约简设计新算法并建立(最坏情况)硬度结果,并描绘量子和经典计算能力的更好画面。在教育、指导和推广方面的共同努力将被整合到研究计划中,这可以培养新一代量子计算的劳动力,并进一步扩大计算的参与,更广泛地说,从不同的学生群体中,STEM。这个奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fang Song其他文献
An integrated charge-transfer relaxation oscillator without comparator
不带比较器的集成电荷转移张弛振荡器
- DOI:
10.1007/s10470-018-1144-2 - 发表时间:
2018-03 - 期刊:
- 影响因子:1.4
- 作者:
Ma Yanzhao;Fang Song;Cui Kai;Wang Danghui;Fan Xiaoya - 通讯作者:
Fan Xiaoya
Diagnosis of Spinal Muscular Atrophy: A Simple Method for Quantifying the Relative Amount of Survival Motor Neuron Gene 1/2 Using Sanger DNA Sequencing
脊髓性肌萎缩症的诊断:使用桑格 DNA 测序定量运动神经元存活基因 1/2 相对量的简单方法
- DOI:
10.4103/0366-6999.247198 - 发表时间:
2018-12 - 期刊:
- 影响因子:6.1
- 作者:
Yan‑Yan Cao;Wen‑Hui Zhang;Yu‑Jin Qu;Jin‑Li Bai;Yu‑Wei Jin;Hong Wang;Fang Song - 通讯作者:
Fang Song
Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil
生物炭降低了生菜对手性农药甲霜灵的对映选择性吸收,并改变了农业土壤中的细菌群落
- DOI:
10.1016/j.jhazmat.2021.126047 - 发表时间:
2021 - 期刊:
- 影响因子:13.6
- 作者:
You Xiangwei;Suo Fengyue;Yin Shaojing;Wang Xiao;Zheng Hao;Fang Song;Zhang Chengsheng;Li Fengmin;Li Yiqiang - 通讯作者:
Li Yiqiang
Coexistence of Primary Sarcomatoid Carcinoma of the Right Ventricle and Absence of Right Pulmonary Artery
右心室原发肉瘤样癌与右肺动脉缺如并存
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Guobing Hu;Fang Song;Xiangming Zhu;Baiyu Yang;Yinhua Liu;Ying Liu - 通讯作者:
Ying Liu
Phosphorus-doping promotes the electrochemical etching of metals to nanoporous electrodes for efficient and durable overall water splitting
磷掺杂促进金属对纳米多孔电极的电化学蚀刻,实现高效、持久的整体水分解
- DOI:
10.1016/j.jpowsour.2022.231774 - 发表时间:
2022-09 - 期刊:
- 影响因子:9.2
- 作者:
Ruohan Feng;Zhenhua Ye;Qu Jiang;Chuanwei Li;Jianfeng Gu;Fang Song - 通讯作者:
Fang Song
Fang Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fang Song', 18)}}的其他基金
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2224131 - 财政年份:2022
- 资助金额:
$ 53.65万 - 项目类别:
Standard Grant
AF: Small: Quantum Computational Pseudorandomness with Applications
AF:小:量子计算伪随机性及其应用
- 批准号:
2041841 - 财政年份:2020
- 资助金额:
$ 53.65万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Quantum-Secure Cryptography and Fine-Grained Quantum Query Complexity
AF:中:协作研究:量子安全密码学和细粒度量子查询复杂性
- 批准号:
2042414 - 财政年份:2020
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
FET: CAREER: Algorithms, cryptography and complexity meet quantum reductions
FET:职业:算法、密码学和复杂性满足量子缩减
- 批准号:
2054758 - 财政年份:2020
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
AF: Small: Quantum Computational Pseudorandomness with Applications
AF:小:量子计算伪随机性及其应用
- 批准号:
1921047 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Quantum-Secure Cryptography and Fine-Grained Quantum Query Complexity
AF:中:协作研究:量子安全密码学和细粒度量子查询复杂性
- 批准号:
1764042 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
AF: Small: Quantum Computational Pseudorandomness with Applications
AF:小:量子计算伪随机性及其应用
- 批准号:
1816869 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Quantum-Secure Cryptography and Fine-Grained Quantum Query Complexity
AF:中:协作研究:量子安全密码学和细粒度量子查询复杂性
- 批准号:
1901624 - 财政年份:2018
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
- 批准号:
2339978 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: Foundations, Algorithms, and Tools for Browser Invalidation
职业:浏览器失效的基础、算法和工具
- 批准号:
2340192 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 53.65万 - 项目类别:
Continuing Grant