CAREER: Leveraging Electroencephalography (EEG) Artifacts for Multimodal Neuromechanics

职业:利用脑电图 (EEG) 伪影实现多模式神经力学

基本信息

项目摘要

Electroencephalography (EEG) is widely used for studying the brain and increasingly during walking and dynamic movements. While the intended use of EEG is to non-invasively measure brain electrical activity, EEG actually records a mixture of electrical signals from the brain, muscles, eyes, heart, and motion. To study the brain, these artifact (non-brain) signals need to be removed and are often then discarded, even though the artifact signals contain information about other on-going processes occurring in the body. The goal of this CAREER project is to develop new electrodes and methods for separating and then leveraging EEG artifact (muscle, eye, heart, and motion) signals to predict metrics such as gait symmetry, eye gaze, and metabolic cost during walking. This project will establish that EEG alone can provide metrics from multiple modalities for studying neuromechanics (i.e., interaction between neural processes and biomechanics) of human locomotion. These efforts will help increase understanding of the interplay between brain processes and the biomechanics of walking, which may provide greater insight regarding the underlying deficits in mobility and cognition that occur with aging and disease. Throughout this project, educational and outreach activities will use EEG and neuromechanics to provide girls and members of their support network (parents, grandparents, older siblings, teachers, university students, etc.) shared STEM experiences to learn about the brain, biomechanics, engineering, and human movement. A key focus of this project is to help build and strengthen an infrastructure of advocates to encourage, guide, and support girls and women to succeed in STEM.The Investigator’s overarching research goal is to develop a comprehensive understanding of the brain dynamics and neuromechanics of human locomotion. The only way to form a comprehensive understanding of brain dynamics during walking and locomotor adaptation is to use multiple modalities that can measure brain activity and biomechanics during actual walking within a single experiment, which is currently impractical or infeasible. This CAREER project will develop new electroencephalography (EEG) sensors and methods to leverage the multitude of source signals that are recorded in EEG and then apply these technologies in a split-belt walking experiment to study locomotor adaptation with a multimodal neuromechanics perspective. The central hypothesis is that EEG artifact (muscle, eye, heart, and motion) source signals obtained from blind source separation (independent component analysis, ICA) will predict biomechanical metrics (gait symmetry, eye gaze, and metabolic cost) better than raw EEG. The research plan has three objectives. The FIRST Objective is to develop and evaluate multiple dual-sided electrodes using benchtop experiments to identify the type of dual-sided electrode that improves the quality of EEG source signals the most. Dual-sided electrodes record traditional EEG signals on the scalp while simultaneously measuring isolated motion artifact signals that can likely be removed from scalp EEG, improving separation of brain and artifact source signals in EEG. The SECOND Objective is to evaluate multiple machine learning techniques to predict biomechanical metrics (gait symmetry, eye gaze fixation, and metabolic cost) from EEG artifact source signals. Dual-layer EEG will be recorded as human participants walk in different conditions that produce fixed values of gait symmetry, eye gaze fixation, and metabolic cost in three separate experiments to obtain training and testing data for the machine learning classifiers. The THIRD Objective is to use the developed technologies to determine how electrocortical dynamics, gait symmetry, eye gaze fixation, and metabolic cost correlate with locomotor adaptation. An extended split-belt walking experiment will be conducted where dual-layer EEG will be recorded as human participants walk on a split-belt treadmill with one belt moving faster than the other belt for 45 minutes. The technologies developed in this project will establish that EEG alone can provide new insights about neuromechanics from a comprehensive perspective that integrates brain, kinematic, visual, and metabolic measures in a single experiment. This project will also highlight that EEG has the potential to be used for understanding more than just brain dynamics and will lay the foundation for the field to develop additional technologies for multimodal neuromechanics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
脑电图(EEG)被广泛用于研究大脑,并越来越多地用于步行和动态运动。虽然EEG的预期用途是非侵入性地测量脑电活动,但EEG实际上记录了来自大脑、肌肉、眼睛、心脏和运动的电信号的混合。为了研究大脑,这些伪影(非大脑)信号需要被去除,然后通常被丢弃,即使伪影信号包含有关身体中发生的其他正在进行的过程的信息。该CAREER项目的目标是开发新的电极和方法,用于分离并利用EEG伪影(肌肉,眼睛,心脏和运动)信号来预测步态对称性,眼睛注视和步行过程中的代谢成本等指标。该项目将确定EEG单独可以提供用于研究神经力学的多种模式的指标(即,神经过程和生物力学之间的相互作用)。这些努力将有助于增加对大脑过程和行走生物力学之间相互作用的理解,这可能会对衰老和疾病导致的移动性和认知方面的潜在缺陷提供更深入的了解。在整个项目中,教育和推广活动将利用脑电图和神经力学,为女孩及其支持网络成员(父母、祖父母、年长的兄弟姐妹、教师、大学生等)分享STEM经验,了解大脑,生物力学,工程和人体运动。该项目的一个重点是帮助建立和加强倡导者的基础设施,以鼓励,指导和支持女孩和妇女在STEM中取得成功。研究者的首要研究目标是全面了解人类运动的大脑动力学和神经力学。在步行和运动适应过程中形成对大脑动力学的全面理解的唯一方法是使用多种模式,这些模式可以在单个实验中测量实际步行过程中的大脑活动和生物力学,这目前是不切实际或不可行的。该CAREER项目将开发新的脑电图(EEG)传感器和方法,以利用EEG中记录的大量源信号,然后将这些技术应用于分裂带步行实验,以多模态神经力学的角度研究运动适应。中心假设是从盲源分离(独立分量分析,伊卡)获得的EEG伪影(肌肉、眼睛、心脏和运动)源信号将比原始EEG更好地预测生物力学指标(步态对称性、眼睛注视和代谢成本)。研究计划有三个目标。第一个目标是使用台式实验开发和评估多个双面电极,以确定最能提高EEG源信号质量的双面电极类型。双侧电极记录头皮上的传统EEG信号,同时测量可能从头皮EEG中去除的孤立运动伪影信号,改善EEG中大脑和伪影源信号的分离。第二个目标是评估多种机器学习技术,以根据EEG伪影源信号预测生物力学指标(步态对称性、眼睛注视和代谢成本)。当人类参与者在不同的条件下行走时,将记录双层EEG,这些条件在三个单独的实验中产生步态对称性,眼睛注视和代谢成本的固定值,以获得机器学习分类器的训练和测试数据。第三个目标是使用已开发的技术来确定皮层电动力学、步态对称性、眼睛注视固定和代谢成本与运动适应的关系。将进行扩展的分裂带行走实验,其中当人类参与者在分裂带跑步机上行走时,将记录双层EEG,其中一条带比另一条带移动得更快,持续45分钟。在这个项目中开发的技术将建立EEG单独可以提供关于神经力学从一个全面的角度,在一个单一的实验中集成大脑,运动,视觉和代谢措施的新见解。该项目还将突出EEG有潜力用于理解不仅仅是大脑动力学,并将为该领域奠定基础,以开发更多的技术,为多模态neuromechanics.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helen Huang其他文献

A636P is associated with early-onset colon cancer in Ashkenazi Jews.
A636P 与德系犹太人的早发结肠癌有关。
  • DOI:
    10.1016/s1072-7515(02)01808-2
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    J. Guillem;B. Rapaport;T. Kirchhoff;P. Kolachana;K. Nafa;E. Glogowski;R. Finch;Helen Huang;W. Foulkes;A. Markowitz;N. Ellis;K. Offit
  • 通讯作者:
    K. Offit
72 - Predicting Response to Resensitization of Radioiodine Resistant Thyroid Cancer With Whole Exome Sequencing
  • DOI:
    10.1016/j.jcjd.2019.07.081
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kirstie Lithgow;Helen Huang;Denise Chan;Moosa Khalil;Mike Bristow;Vincent Dinculescu;Markus Eszlinger;Vicky Parkins;Ralf Paschke
  • 通讯作者:
    Ralf Paschke
Wild-Type Calreticulin Downmodulates MPL and Impacts HSC Self-Renewal
  • DOI:
    10.1182/blood-2023-189705
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Kiana K. Guillermo;Stefan Brooks;Lucas Wadley;Jianhong C Heidmann;Helen Huang;Jane Chen;Aanya Amin;Anaya Qamar;Brianna Hoover;Gajalakshmi Ramanathan;Angela G. Fleischman
  • 通讯作者:
    Angela G. Fleischman
Mitigating Oxidative Stress Promotes Quiescence of Hematopoietic Stem Cells from Concurrent TLR4 Activation and IL-10R Blockade Mediated Inflammation
  • DOI:
    10.1182/blood-2023-185279
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sultan A Alsuhaibani;Jeanette Y Sullivan;Tiffany Trieu;Helen Huang;Jianhong C Heidmann;Jared E Agagas;Kevin Arango;Dennis Jing;Gajalakshmi Ramanathan;Angela G. Fleischman
  • 通讯作者:
    Angela G. Fleischman
Aneurysmal subarachnoid haemorrhage in Indigenous and non-Indigenous Australians: A retrospective study assessing patient characteristics and outcome
  • DOI:
    10.1016/j.jocn.2022.05.010
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jorn Van Der Veken;Helen Huang;Leon T Lai
  • 通讯作者:
    Leon T Lai

Helen Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
  • 批准号:
    MR/Z503514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
  • 批准号:
    2345273
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
  • 批准号:
    2339025
  • 财政年份:
    2024
  • 资助金额:
    $ 52.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了