CAREER:Identifying Brain Anatomy and Function for Risky Behaviors in Large-Scale Imaging and Genetics Studies

职业:在大规模成像和遗传学研究中识别危险行为的大脑解剖结构和功能

基本信息

  • 批准号:
    1942917
  • 负责人:
  • 金额:
    $ 88.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Humans vary in their tendency to engage in behaviors that risk their own and others’ health and longevity. Such risky behaviors impose significant costs on societies, and much public spending is devoted to reducing their prevalence. This project seeks to identify the features of the human brain that underlie individual differences in the tendency to engage in risky behavior, as well as its associated genetic disposition. Unlike previous research on the topic that has relied on small non-representative samples, this project will use the largest collection of brain scans currently available, about 100,000 images. It will combine these images with genome-wide data and survey measures about risky behavior and analyze the data using advanced statistical techniques. This project will provide unique insights into the neuroanatomical and neurofunctional underpinnings of individual differences in risky behavior, and illuminate the causal relationships between genes, brain and behavior. As features of brain anatomy and function are sensitive to the influence of (early-) life environmental factors during sensitive developmental periods, the project can provide insight into how such factors influence the development of risky behavior during adulthood. All analyses will be based on pre-registered protocols and publicly available data and code, and as such will facilitate future research by generating reusable variables and analysis scripts. The educational plan includes the organization of workshops to facilitate a dialogue between geneticists, magnetic resonance imaging (MRI) researchers, and social scientists, as well as the development of teaching materials that introduce concepts in neuroscience and genetics to the next generation of scientists, business students, and the general public.This project integrates research, education and outreach programs aiming to break new grounds in the understanding of the neuroanatomical, neurofunctional and genetic underpinnings of individual differences in risky behavior. The proposed research includes high-quality T1, diffusion tensor imaging and resting-state functional MRI images. The research will combine this data with self-reported measures of risky behaviors, common single nucleotide polymorphisms (SNPs), results from large-scale genome-wide association studies (GWAS) of risky behaviors from independent samples, and demographic and environmental variables. The overall aims of this projects are to identify brain features that are robustly associated with the tendency to engage in risky behavior; annotate previously reported genetic associations of risky behavior using in-vivo brain images; employ statistical techniques to provide lower bounds of causal relationships between brain features and risky behavior; and to use machine-learning techniques for aggregating multimodal measurements across the brain to predict individual-level risky behavior.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类参与危及自己和他人健康和寿命的行为的倾向各不相同。这种危险行为给社会带来了巨大的成本,许多公共支出都用于减少其流行。该项目旨在确定人类大脑的特征,这些特征是参与危险行为倾向的个体差异的基础,以及相关的遗传倾向。与之前依赖于小的非代表性样本的研究不同,该项目将使用目前可用的最大的大脑扫描图像集,约10万张图像。它将联合收割机将这些图像与全基因组数据和有关危险行为的调查措施相结合,并使用先进的统计技术分析数据。该项目将提供独特的见解神经解剖学和神经功能基础的个体差异的危险行为,并阐明基因,大脑和行为之间的因果关系。由于大脑解剖学和功能的特征在敏感的发育时期对(早期)生活环境因素的影响很敏感,该项目可以深入了解这些因素如何影响成年期危险行为的发展。所有分析都将基于预先注册的协议和公开可用的数据和代码,因此将通过生成可重复使用的变量和分析脚本来促进未来的研究。该教育计划包括组织研讨会,以促进遗传学家,磁共振成像(MRI)研究人员和社会科学家之间的对话,以及开发教材,向下一代科学家,商学院学生和公众介绍神经科学和遗传学的概念。该项目将研究,教育和推广计划,旨在为理解危险行为的个体差异的神经解剖学、神经功能和遗传基础开辟新的领域。拟议的研究包括高质量的T1,扩散张量成像和静息态功能MRI图像。这项研究将联合收割机将这些数据与自我报告的危险行为测量、常见的单核苷酸多态性(SNP)、来自独立样本的危险行为的大规模全基因组关联研究(GWAS)的结果以及人口统计学和环境变量相结合。该项目的总体目标是识别与从事危险行为的倾向密切相关的大脑特征;使用活体大脑图像注释先前报告的危险行为的遗传关联;采用统计技术提供大脑特征和危险行为之间因果关系的下限;并使用机器学习技术来聚合大脑中的多模态测量值,以预测个体该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gideon Nave其他文献

Correction to: Marketing insights from text analysis
  • DOI:
    10.1007/s11002-022-09640-9
  • 发表时间:
    2022-07-07
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jonah Berger;Grant Packard;Reihane Boghrati;Ming Hsu;Ashlee Humphreys;Andrea Luangrath;Sarah Moore;Gideon Nave;Christopher Olivola;Matthew Rocklage
  • 通讯作者:
    Matthew Rocklage
Examining the replicability of online experiments selected by a decision market
研究由决策市场选定的在线实验的可重复性
  • DOI:
    10.1038/s41562-024-02062-9
  • 发表时间:
    2024-11-19
  • 期刊:
  • 影响因子:
    15.900
  • 作者:
    Felix Holzmeister;Magnus Johannesson;Colin F. Camerer;Yiling Chen;Teck-Hua Ho;Suzanne Hoogeveen;Juergen Huber;Noriko Imai;Taisuke Imai;Lawrence Jin;Michael Kirchler;Alexander Ly;Benjamin Mandl;Dylan Manfredi;Gideon Nave;Brian A. Nosek;Thomas Pfeiffer;Alexandra Sarafoglou;Rene Schwaiger;Eric-Jan Wagenmakers;Viking Waldén;Anna Dreber
  • 通讯作者:
    Anna Dreber
Real-time change detection of steady-state evoked potentials
  • DOI:
    10.1007/s00422-012-0523-5
  • 发表时间:
    2012-10-05
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Gideon Nave;Yonina C. Eldar;Gideon Inbar;Alon Sinai;Hillel Pratt;Menashe Zaaroor
  • 通讯作者:
    Menashe Zaaroor
ChatGPT decreases idea diversity in brainstorming
ChatGPT 降低了头脑风暴中的想法多样性
  • DOI:
    10.1038/s41562-025-02173-x
  • 发表时间:
    2025-05-14
  • 期刊:
  • 影响因子:
    15.900
  • 作者:
    Lennart Meincke;Gideon Nave;Christian Terwiesch
  • 通讯作者:
    Christian Terwiesch

Gideon Nave的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Identifying the role of notch3 in brain pericyte function in health and Alzheimer's disease
确定 notch3 在健康和阿尔茨海默病中大脑周细胞功能中的作用
  • 批准号:
    10679198
  • 财政年份:
    2023
  • 资助金额:
    $ 88.95万
  • 项目类别:
RUI: Identifying reproductive roles for the Super-conserved Receptors Expressed in Brain (SREB) G protein-coupled receptor family using novel agonists and a comparative fish model
RUI:使用新型激动剂和比较鱼类模型确定脑中表达的超级保守受体 (SREB) G 蛋白偶联受体家族的生殖作用
  • 批准号:
    2307614
  • 财政年份:
    2023
  • 资助金额:
    $ 88.95万
  • 项目类别:
    Continuing Grant
Identifying genetics and brain imaging-based biomarkers of neuron-type specific vulnerability in late life
识别晚年神经元类型特定脆弱性的基于遗传学和脑成像的生物标志物
  • 批准号:
    490288
  • 财政年份:
    2023
  • 资助金额:
    $ 88.95万
  • 项目类别:
    Operating Grants
Brain Gain: Identifying candidate dementia-related biomarkers and early intervention strategies for adults aged 50+ with a history of mild traumatic brain injury - A patient-oriented research study
脑增益:为有轻度创伤性脑损伤史的 50 岁成年人识别候选痴呆相关生物标志物和早期干预策略 - 一项以患者为导向的研究
  • 批准号:
    495566
  • 财政年份:
    2023
  • 资助金额:
    $ 88.95万
  • 项目类别:
    Miscellaneous Programs
Identifying blood brain barrier signatures in cerebral malaria and central nervous system infections to inform treatment targets and patient stratific
识别脑型疟疾和中枢神经系统感染中的血脑屏障特征,以告知治疗目标和患者分层
  • 批准号:
    2887633
  • 财政年份:
    2023
  • 资助金额:
    $ 88.95万
  • 项目类别:
    Studentship
Identifying the neural mechanisms of goal-directed decision-making in Parkinson's disease using closed-loop deep brain stimulation
使用闭环深部脑刺激识别帕金森病目标导向决策的神经机制
  • 批准号:
    10608842
  • 财政年份:
    2023
  • 资助金额:
    $ 88.95万
  • 项目类别:
The long-term consequences of neonatal encephalopathy in the era of therapeutic hypothermia: Identifying child and brain developmental profiles at 9 years of age.
低温治疗时代新生儿脑病的长期后果:确定 9 岁时儿童和大脑发育概况。
  • 批准号:
    462097
  • 财政年份:
    2022
  • 资助金额:
    $ 88.95万
  • 项目类别:
    Operating Grants
Identifying the neurostructural determinants of minimal cognition using embodied 3D bioengineered brain models
使用具体的 3D 生物工程大脑模型识别最小认知的神经结构决定因素
  • 批准号:
    DGECR-2022-00278
  • 财政年份:
    2022
  • 资助金额:
    $ 88.95万
  • 项目类别:
    Discovery Launch Supplement
Identifying Brain Network Features that Underlie Clinical Classification
识别临床分类基础的大脑网络特征
  • 批准号:
    574538-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 88.95万
  • 项目类别:
    University Undergraduate Student Research Awards
Identifying Brain Epitranscriptomic Changes Associated with Alcohol Use Disorder
识别与酒精使用障碍相关的大脑表观转录组变化
  • 批准号:
    10580861
  • 财政年份:
    2022
  • 资助金额:
    $ 88.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了