CAREER: Practical Privacy and Fairness for Data-Driven Applications

职业:数据驱动应用程序的实用隐私和公平

基本信息

  • 批准号:
    1943016
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Data-driven applications play an increasing role in peoples’ lives, underpinning systems and services that collect broad personal information to provide novel functionality and valuable insights. Machine learning techniques are predominantly used to implement these applications, and developers have published an array of libraries that make it easy for any programmer to benefit from this technology. While excitement over these developments has led to numerous positive contributions, it has also been accompanied by concerns around the privacy of individuals’ data, and the potential for these systems to discriminate against some individuals. This project aims to move ahead of these problems by exploring verification techniques for uncovering instances of protected information use that lead to privacy loss and discrimination. Inspired by recent advances that allow attribution of predictions in machine learning models, we build on methods from software model checking and optimization to locate components pivotal to these outcomes, and construct data representations that aid in removing them. In parallel, we are developing a deeper understanding of new types of software "bugs" that result in such harms: bias amplification, which imperils fairness, and exploitable data memorization, which introduces privacy risk. We aim to quantify the extent to which existing techniques can prevent the occurrence of these bugs, and inform the development of new ones that are specifically targeted at them. As this project progresses, we are applying the results towards educating a diverse workforce on data privacy, algorithmic fairness, and rigorous approaches to constructing software that uses machine learning effectively.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的应用程序在人们的生活中发挥着越来越大的作用,支持收集广泛个人信息以提供新功能和有价值见解的系统和服务。机器学习技术主要用于实现这些应用程序,开发人员已经发布了一系列库,使任何程序员都可以轻松地从这项技术中受益。虽然对这些发展的兴奋导致了许多积极的贡献,但也伴随着对个人数据隐私的担忧,以及这些系统歧视某些人的可能性。该项目旨在通过探索验证技术来发现导致隐私损失和歧视的受保护信息使用情况,从而提前解决这些问题。受机器学习模型中预测属性的最新进展的启发,我们建立在软件模型检查和优化的方法基础上,以定位对这些结果至关重要的组件,并构建有助于移除它们的数据表示。与此同时,我们正在更深入地了解导致这种危害的新型软件“错误”:偏见放大,这危及公平,以及可利用的数据记忆,这会带来隐私风险。我们的目标是量化现有技术可以防止这些错误发生的程度,并为专门针对这些错误的新技术的开发提供信息。随着该项目的进展,我们正在将成果应用于教育多样化的员工,使他们了解数据隐私、算法公平性以及构建有效使用机器学习的软件的严格方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TEO: ephemeral ownership for IoT devices to provide granular data control
Leave-one-out Unfairness
Selective Ensembles for Consistent Predictions
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Black;Klas Leino;Matt Fredrikson
  • 通讯作者:
    Emily Black;Klas Leino;Matt Fredrikson
Consistent Counterfactuals for Deep Models
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Black;Zifan Wang;Matt Fredrikson;Anupam Datta
  • 通讯作者:
    E. Black;Zifan Wang;Matt Fredrikson;Anupam Datta
Relaxing Local Robustness
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Klas Leino;Matt Fredrikson
  • 通讯作者:
    Klas Leino;Matt Fredrikson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Fredrikson其他文献

Matthew Fredrikson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Fredrikson', 18)}}的其他基金

SaTC: CORE: Large: Collaborative: Accountable Information Use: Privacy and Fairness in Decision-Making Systems
SaTC:核心:大型:协作:负责任的信息使用:决策系统中的隐私和公平
  • 批准号:
    1704845
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Consensus Protocol Design with Accountability and Privacy under Practical Failure Models
职业:在实际失败模型下具有责任和隐私的可扩展共识协议设计
  • 批准号:
    2237814
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
  • 批准号:
    23KJ0649
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards Practical Federated Analytics and Multi-Target Privacy Enhancing Technologies (PETs)
迈向实用的联合分析和多目标隐私增强技术 (PET)
  • 批准号:
    2598750
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
CAREER: Practical Control Engineering Principles to Improve the Security and Privacy of Cyber-Physical Systems
职业:提高网络物理系统安全性和隐私性的实用控制工程原理
  • 批准号:
    1931573
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Designing Practical Tools for Using Differential Privacy
设计使用差异隐私的实用工具
  • 批准号:
    542585-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Practical Control Engineering Principles to Improve the Security and Privacy of Cyber-Physical Systems
职业:提高网络物理系统安全性和隐私性的实用控制工程原理
  • 批准号:
    1553683
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
TWC: Small: RUI: Achieving Practical Privacy for the Cloud
TWC:小型:RUI:实现云的实用隐私
  • 批准号:
    1618269
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Interagency Agreement
CAREER: PROTEUS: A Practical and Rigorous Toolkit for Privacy
职业:PROTEUS:实用且严格的隐私工具包
  • 批准号:
    1253327
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
TC: Large: Collaborative Research: Practical Privacy: Metrics and Methods for Protecting Record-level and Relational Data
TC:大型:协作研究:实用隐私:保护记录级和关系数据的指标和方法
  • 批准号:
    1012593
  • 财政年份:
    2010
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了