CAREER: Foundational statistical theory and methods for analyzing populations of attributed connectomes

职业:用于分析归因连接体群体的基础统计理论和方法

基本信息

  • 批准号:
    1942963
  • 负责人:
  • 金额:
    $ 63.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Understanding the brain has been called science’s final frontier due to its astonishing complexity. It provides people with their unmatched cognitive capabilities and is the source of some of our most debilitating disabilities. A widespread view among brain scientists is that brains are essentially large complex networks, with each node and edge of the network itself being a complex object. Thus, to understand ourselves and to fight disorders including depression (the world’s leading burden of disease) and suicide (a current epidemic), the scientist on this project will develop mathematical and statistical tools to study networks and apply them to brain networks. This will provide a deeper understanding of human brains and contribute to preventing dysfunction and restoring function. All the tools they develop will also be integrated into a course, and all of the science, including papers, code, and educational materials, will be generated in the open source, so that everyone in society will have access to this content. The investigator will establish foundational theory and methods for analyzing populations of attributed connectomes. Their approach, “connectal coding,” will enable brain scientists to (1) infer latent structure from individual connectomes, (2) identify meaningful clusters among populations of connectomes, and (3) detect relationships between connectomes and multivariate phenotypes. The methods they develop will naturally overcome the challenges inherent in connectomics: high-dimensional non-Euclidean data with multi-level nonlinear interactions. Their procedures will extend the current state-of-the-art in terms of theoretical guarantees, computational scalability, empirical performance, and interpretability of results. The efficacy of the methods will be demonstrated on datasets spanning experimental modalities, scales, and taxa, in collaboration with domain experts who acquired the data. They will also generate educational resources to complement their methods, data, and code to democratize connectomics. All project results will be available at https://neurodata.io/graspyThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于大脑惊人的复杂性,了解大脑被称为科学的最后前沿。它为人们提供了无与伦比的认知能力,也是我们一些最令人衰弱的残疾的根源。脑科学家普遍认为,大脑本质上是一个庞大的复杂网络,网络的每个节点和边缘本身就是一个复杂的对象。因此,为了了解我们自己并对抗包括抑郁症(世界上最大的疾病负担)和自杀(当前流行病)在内的疾病,该项目的科学家将开发数学和统计工具来研究网络并将其应用于大脑网络。这将提供对人类大脑的更深入了解,并有助于预防功能障碍和恢复功能。他们开发的所有工具也将被整合到一门课程中,所有的科学,包括论文、代码和教育材料,都将以开源的方式生成,这样社会上的每个人都可以访问这些内容。研究者将建立基础理论和方法来分析归属连接组的群体。他们的方法,“连接编码”,将使脑科学家能够(1)从单个连接体中推断潜在结构,(2)在连接体群体中识别有意义的簇,(3)检测连接体和多变量表型之间的关系。他们开发的方法将自然克服连接组学固有的挑战:具有多级非线性相互作用的高维非欧几里得数据。他们的程序将在理论保证、计算可扩展性、经验性能和结果的可解释性方面扩展当前最先进的技术。这些方法的有效性将在跨越实验模式,规模和分类的数据集上与获得数据的领域专家合作进行证明。他们还将产生教育资源,以补充他们的方法,数据和代码,使连接组学民主化。所有项目结果将在www.example.com上公布https://neurodata.io/graspyThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ReX: an integrative tool for quantifying and optimizing measurement reliability for the study of individual differences
  • DOI:
    10.1038/s41592-023-01901-3
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Ting Xu;Gregory Kiar;J. Cho;Eric W. Bridgeford;A. Nikolaidis;J. Vogelstein;M. Milham
  • 通讯作者:
    Ting Xu;Gregory Kiar;J. Cho;Eric W. Bridgeford;A. Nikolaidis;J. Vogelstein;M. Milham
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Vogelstein其他文献

Joshua Vogelstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Vogelstein', 18)}}的其他基金

NeuroNex Innovation Award: Towards Automatic Analysis of Multi-Terabyte Cleared Brains
NeuroNex 创新奖:实现多 TB 级清晰大脑的自动分析
  • 批准号:
    1707298
  • 财政年份:
    2017
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Standard Grant
A Scientific Planning Workshop for Coordinating Brain Research Around the Globe, Baltimore, Maryland, April 7-8, 2016
协调全球大脑研究的科学规划研讨会,马里兰州巴尔的摩,2016 年 4 月 7-8 日
  • 批准号:
    1637376
  • 财政年份:
    2016
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Standard Grant

相似海外基金

Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
  • 批准号:
    2346636
  • 财政年份:
    2024
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Standard Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
  • 批准号:
    2339483
  • 财政年份:
    2024
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Continuing Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Continuing Grant
CAREER: Efficient and Scalable Large Foundational Model Training on Supercomputers for Science
职业:科学超级计算机上高效且可扩展的大型基础模型训练
  • 批准号:
    2340011
  • 财政年份:
    2024
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Standard Grant
Sonar Foundational Model for Representation Learning and Automatic Target Recognition Systems in Underwater Maritime Environment
水下海洋环境中表示学习和自动目标识别系统的声纳基础模型
  • 批准号:
    2903803
  • 财政年份:
    2024
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Studentship
TRTech-PGR: Unlocking Bread Wheat Genome Diversity: Foundational Genome Sequences and Resources to Advance Breeding and Biotechnological Improvement of a Global Food Security Crop
TRTech-PGR:解锁面包小麦基因组多样性:促进全球粮食安全作物育种和生物技术改进的基础基因组序列和资源
  • 批准号:
    2322957
  • 财政年份:
    2024
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Standard Grant
Establishing foundational tools and datasets for investigation of NSD1 gene function in neural development
建立用于研究神经发育中 NSD1 基因功能的基础工具和数据集
  • 批准号:
    10711291
  • 财政年份:
    2023
  • 资助金额:
    $ 63.02万
  • 项目类别:
Conference: NSF-NIH Joint Workshop on Foundational AI in Biology
会议:NSF-NIH 生物学基础人工智能联合研讨会
  • 批准号:
    2325301
  • 财政年份:
    2023
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Standard Grant
Remote and Autonomous Integrated Service Robot System Based on Intuitive Human Sensation and Foundational Model
基于人类直觉和基础模型的远程自主综合服务机器人系统
  • 批准号:
    23K20003
  • 财政年份:
    2023
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 63.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了