NRI: EAGER: Teaching Aerial Robots to Perch Like a Bat via AI-Guided Design and Control
NRI:EAGER:通过人工智能引导设计和控制教导空中机器人像蝙蝠一样栖息
基本信息
- 批准号:1944964
- 负责人:
- 金额:$ 10.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will develop the scientific and technological foundations for design of small unmanned aerial vehicles (UAVs) with bat shapes and flying abilities. These bat-like UAVs will be non-intrusive and safe to operate in shared spaces to provide situational awareness to humans. Our bat-inspired design will also be collision-tolerant to negotiate cluttered, hard-to-access environments in the physical world. The resulting technology can significantly improve public safety and vehicular dynamic traffic control in smart cities and cost-effectiveness associated with monitoring environmental disasters. Ultimately, the UAV can provide computing, communication and sensing capabilities in large-scale systems such as, residential buildings, streets, construction zones, and state parks. These capabilities should result in enormous societal impact and economic benefit. In addition, as the result of this project, a new generation of scientists and engineers will be trained in addressing multidisciplinary challenges at the intersection of theory and experiment. The project will create programs and tools to train workforce with new skills including bio-inspired robotics, machine learning and artificial intelligence, and nonlinear control theory. This research adopts an artificial intelligence-guided framework to study bat's flight maneuvers including perching (i.e. upside-down landing), zero-path flight, and hovering. Due to the fact that the salient aspects of the bat's wing motion can be represented in a low-dimensional subspace, we will apply an auto-encoding variational inference approach on the flying data from real animal in order to extract low dimensional, yet interpretable, embedding of the its underlying flight model. We will also use a high-fidelity virtual environment for 3D modeling, synthetic design and validation of the extracted low-dimensional latent variables. This will also lead to better understating of the bat sensory feedback mechanism through a data-driven procedure. Our research objective will simplify the engineering procedure to design bio-inspired aerial co-robots that closely mimic the flight behavior of a target animal, therefore is directly towards lowering the barriers for understanding fundamentals regarding closed-loop control and design of bio-inspired multimodal co-robots. In order to achieve the proposed research objectives, we will center our effort around conducting two main phases during the one year timeline of this project: first, AI-guided analysis and modeling of bat's various flight maneuvers, and second, development of a soft and collision-tolerant bat-inspired aerial agent capable of landing on structures. These two phases will be accomplished by team's cross-disciplinary collaborative, as components are highly interlinked and dependent.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将为设计具有蝙蝠形状和飞行能力的小型无人机(UAV)奠定科学和技术基础。这些类似蝙蝠的无人机将是非侵入性的,可以安全地在共享空间中运行,为人类提供态势感知。我们的蝙蝠灵感的设计也将是碰撞容忍谈判混乱,难以访问的环境中的物理世界。由此产生的技术可以显着改善智能城市的公共安全和车辆动态交通控制,以及与监测环境灾害相关的成本效益。最终,无人机可以在大型系统中提供计算,通信和传感能力,例如住宅楼,街道,建筑区和州立公园。这些能力将产生巨大的社会影响和经济效益。此外,作为该项目的结果,新一代科学家和工程师将接受培训,以应对理论和实验交叉点的多学科挑战。该项目将创建程序和工具,以培训具有新技能的劳动力,包括生物启发机器人,机器学习和人工智能以及非线性控制理论。本研究采用人工智慧导引架构,研究蝙蝠的飞行动作,包括栖息、零路径飞行及盘旋。由于蝙蝠的翅膀运动的突出方面可以表示在一个低维子空间的事实,我们将应用一个自动编码变分推理方法从真实的动物的飞行数据,以提取低维,但可解释的,嵌入其底层的飞行模型。我们还将使用高保真虚拟环境进行3D建模,合成设计和验证提取的低维潜变量。这也将导致通过数据驱动的程序更好地理解蝙蝠的感官反馈机制。我们的研究目标将简化工程程序,以设计生物启发的空中合作机器人,密切模仿目标动物的飞行行为,因此直接降低了理解闭环控制和生物启发的多模态合作机器人设计的基础知识的障碍。为了实现拟议的研究目标,我们将在该项目的一年时间轴内集中精力进行两个主要阶段:第一,人工智能引导的蝙蝠各种飞行动作的分析和建模,第二,开发一种软的和耐碰撞的蝙蝠启发的空中代理,能够降落在结构上。这两个阶段将通过团队的跨学科合作来完成,因为各个组成部分是高度相互关联和相互依赖的。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting
- DOI:10.1609/aaai.v35i8.16907
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Amirreza Farnoosh;Bahar Azari;S. Ostadabbas
- 通讯作者:Amirreza Farnoosh;Bahar Azari;S. Ostadabbas
Computational Structure Design of a Bio-Inspired Armwing Mechanism
- DOI:10.1109/lra.2020.3010217
- 发表时间:2020-07
- 期刊:
- 影响因子:5.2
- 作者:Eric N. Sihite;Peter Kelly;A. Ramezani
- 通讯作者:Eric N. Sihite;Peter Kelly;A. Ramezani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Ostadabbas其他文献
Vision-Based Treatment Localization with Limited Data: Automated Documentation of Military Emergency Medical Procedures
有限数据下基于视觉的治疗定位:军事紧急医疗程序的自动记录
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Trevor Powers;Elaheh Hatamimajoumerd;William Chu;Vishakk Rajendran;Rishi Shah;Frank Diabour;Marc Vaillant;Richard Fletcher;Sarah Ostadabbas - 通讯作者:
Sarah Ostadabbas
Intelligent Care Management for Diabetic Foot Ulcers: A Scoping Review of Computer Vision and Machine Learning Techniques and Applications.
糖尿病足溃疡的智能护理管理:计算机视觉和机器学习技术及应用的范围审查。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
Cynthia Baseman;Maya Fayfman;Marcos C Schechter;Sarah Ostadabbas;G. Santamarina;Thomas Ploetz;R. Arriaga - 通讯作者:
R. Arriaga
Computational complexity reduction of an adaptive congestion control in Active Queue Management
主动队列管理中自适应拥塞控制的计算复杂度降低
- DOI:
10.1109/ccdc.2008.4598030 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Sarah Ostadabbas;M. Haeri - 通讯作者:
M. Haeri
Sarah Ostadabbas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Ostadabbas', 18)}}的其他基金
Collaborative Research: Development of a precision closed loop BCI for socially fearful teens with depression and anxiety
合作研究:为患有抑郁症和焦虑症的社交恐惧青少年开发精确闭环脑机接口
- 批准号:
2327066 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
CAREER: Learning Visual Representations of Motor Function in Infants as Prodromal Signs for Autism
职业:学习婴儿运动功能的视觉表征作为自闭症的前驱症状
- 批准号:
2143882 - 财政年份:2022
- 资助金额:
$ 10.24万 - 项目类别:
Continuing Grant
CHS: Small: Collaborative Research: A Graph-Based Data Fusion Framework Towards Guiding A Hybrid Brain-Computer Interface
CHS:小型:协作研究:基于图的数据融合框架指导混合脑机接口
- 批准号:
2005957 - 财政年份:2020
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Detection, Assessment and Rehabilitation of Stroke-Induced Visual Neglect Using Augmented Reality (AR) and Electroencephalography (EEG)
SCH:INT:合作研究:使用增强现实 (AR) 和脑电图 (EEG) 检测、评估和康复中风引起的视觉忽视
- 批准号:
1915065 - 财政年份:2019
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
CRII: SCH: Semi-Supervised Physics-Based Generative Model for Data Augmentation and Cross-Modality Data Reconstruction
CRII:SCH:基于半监督物理的数据增强和跨模态数据重建生成模型
- 批准号:
1755695 - 财政年份:2018
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
SBIR Phase I: Pressure Map Analytics for Ulcer Prevention
SBIR 第一阶段:预防溃疡的压力图分析
- 批准号:
1248587 - 财政年份:2013
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
相似海外基金
Education DCL: EAGER: Teaching Privacy via Stakeholder Modeling
教育 DCL:EAGER:通过利益相关者建模教授隐私
- 批准号:
2335625 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
EAGER: Co-Designing a Cognitive Teaching Assistant to Support Evidence-Based Instruction in Open-Ended Learning Environments
EAGER:共同设计认知助教,支持开放式学习环境中的循证教学
- 批准号:
2327708 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
EAGER: Quantum Teaching and Learning in Elementary Classrooms
EAGER:小学课堂的量子教学
- 批准号:
2329874 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
EAGER: Natural Language Processing for Teaching and Research in Engineering Education
EAGER:用于工程教育教学和研究的自然语言处理
- 批准号:
2107008 - 财政年份:2022
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Teaching High School Students about Cybersecurity and Artificial Intelligence Ethics via Empathy-Driven Hands-On Projects
合作研究:EAGER:SaTC-EDU:通过同理心驱动的实践项目向高中生传授网络安全和人工智能伦理知识
- 批准号:
2114991 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Teaching High School Students about Cybersecurity and Artificial Intelligence Ethics via Empathy-Driven Hands-On Projects
合作研究:EAGER:SaTC-EDU:通过同理心驱动的实践项目向高中生传授网络安全和人工智能伦理知识
- 批准号:
2115004 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Teaching High School Students about Cybersecurity and Artificial Intelligence Ethics via Empathy-Driven Hands-On Projects
合作研究:EAGER:SaTC-EDU:通过同理心驱动的实践项目向高中生传授网络安全和人工智能伦理知识
- 批准号:
2115008 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Teaching Security in Undergraduate Artificial Intelligence Courses Using Transparency and Contextualization
EAGER:SaTC-EDU:利用透明度和情境化在本科人工智能课程中教授安全性
- 批准号:
2041960 - 财政年份:2020
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
EAGER: Shifting to Online Instruction for Math Teachers Teaching Computing
EAGER:数学教师计算机教学转向在线教学
- 批准号:
2039357 - 财政年份:2020
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Dynamic Adaptive Machine Learning for Teaching Hardware Security (DYNAMITES)
合作研究:EAGER:SaTC-EDU:用于教学硬件安全的动态自适应机器学习 (DYNAMITES)
- 批准号:
2039607 - 财政年份:2020
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant














{{item.name}}会员




