CAREER: Integrating information across levels of processing during real-time spoken language comprehension
职业:在实时口语理解过程中跨处理级别整合信息
基本信息
- 批准号:1945069
- 负责人:
- 金额:$ 60.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Language comprehension is central to successful communication. However, to understand spoken language, people must cope with noisy environments, variability across speakers' voices and language backgrounds, and differences in the way words are pronounced. As a result, people rely on context, such as the other words in a sentence, to interpret the meaning of what they hear. This project will investigate how people understand spoken language in different contexts by studying brain responses to speech and developing computer models that recognize spoken words in context. The aim is to understand the ways that human listeners successfully communicate in a noisy world. The research may also provide insights into how computer systems designed to recognize speech can be made smarter by having them process language in ways similar to humans. This research will be integrated with the educational component of the project, which will provide students with training in advanced computational and neuroscience techniques that are vital to the STEM workforce. The project addresses these issues by studying language comprehension in experiments using neuroscience techniques that reveal how speech is perceived by the brain in the first few hundred milliseconds of hearing a sound. By studying these early brain responses, the investigators will be able to identify what information the listener uses to distinguish spoken words and determine how these brain responses are affected by the listeners' expectation of which words they will hear. The investigators will also create neural network models that use techniques from machine learning to recognize speech and are trained in a way that mimics how children learn language. The behavior of the model will be compared with the data from human listeners to determine whether the model accurately captures the way the brain understands spoken language in different contexts. The techniques developed from this research will also be used in classroom and laboratory settings to train undergraduate and graduate students in the use of these approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
语言理解是成功沟通的关键。然而,为了理解口语,人们必须应对嘈杂的环境,说话者的声音和语言背景的变化,以及单词发音方式的差异。因此,人们依赖上下文,比如句子中的其他单词,来解释他们听到的意思。该项目将通过研究大脑对语音的反应和开发识别上下文语音的计算机模型来研究人们如何在不同的环境中理解口语。其目的是了解人类听众在嘈杂的世界中成功沟通的方式。这项研究还可能提供一些见解,让用于识别语音的计算机系统以类似于人类的方式处理语言,从而使它们变得更智能。这项研究将与该项目的教育部分相结合,为学生提供对STEM劳动力至关重要的先进计算和神经科学技术的培训。该项目通过使用神经科学技术在实验中研究语言理解来解决这些问题,这些技术揭示了大脑在听到声音的前几百毫秒是如何感知语言的。通过研究这些早期的大脑反应,研究人员将能够确定听者使用哪些信息来区分口语单词,并确定听者对将要听到的单词的期望如何影响这些大脑反应。研究人员还将创建神经网络模型,利用机器学习技术来识别语音,并以模仿儿童学习语言的方式进行训练。该模型的行为将与人类听众的数据进行比较,以确定该模型是否准确地捕捉到了大脑在不同环境下理解口语的方式。本研究开发的技术也将用于课堂和实验室环境,以训练本科生和研究生使用这些方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Toscano其他文献
Joseph Toscano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10754773 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Integrating polygenic and environmental risk factors for asthma in diverse populations
整合不同人群哮喘的多基因和环境危险因素
- 批准号:
10601417 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Construction of a relational data analysis model integrating attribute information and its application to marketing analysis
融合属性信息的关系数据分析模型构建及其在营销分析中的应用
- 批准号:
23K13519 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an advanced search system for documents in archives by integrating computational representations of information useful for searching documents
通过集成可用于搜索文档的信息的计算表示,开发档案中文档的高级搜索系统
- 批准号:
23KK0005 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Integrating visual information with an internal sexual arousal state
将视觉信息与内部性唤起状态相结合
- 批准号:
BB/Y001869/1 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Research Grant
Foundations of Security Quantification by Integrating Information, Computation, and Cryptography Theories
整合信息、计算和密码学理论的安全量化基础
- 批准号:
23H00468 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of technology for integrating case information for international sharing
开发案例信息整合国际共享技术
- 批准号:
23K11886 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10349828 - 财政年份:2022
- 资助金额:
$ 60.53万 - 项目类别:
Identifying the organotypic and disease-specific vascular cell populations by integrating single cell data with polygenic risk
通过将单细胞数据与多基因风险相结合来识别器官型和疾病特异性血管细胞群
- 批准号:
10652639 - 财政年份:2022
- 资助金额:
$ 60.53万 - 项目类别:
FINISHING HIV: An EHE model for Latinos Integrating One-Stop-Shop PrEP Services, a Social Network Support Program and a National Pharmacy Chain
完成艾滋病毒:针对拉丁裔的 EHE 模式,整合一站式 PrEP 服务、社交网络支持计划和全国药房连锁店
- 批准号:
10652529 - 财政年份:2022
- 资助金额:
$ 60.53万 - 项目类别: